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FOREWORD

The National Curriculum Framework (NCF), 2005 recommends that children’s life at school must
be linked to their life outside the school. This principle marks a departure from the legacy of bookish
learning which continues to shape our system and causes a gap between the school, home and
community. The syllabi and textbooks developed on the basis of NCF signify an attempt to implement
this basic idea. They also attempt to discourage rote learning and the maintenance of sharp
boundaries between different subject areas. We hope these measures will take us significantly
further in the direction of a child-centred system of education outlined in the National Policy on
Education (NPE), 1986.

The success of this effort depends on the steps that school principals and teachers will take to
encourage children to reflect on their own learning and to pursue imaginative activities and questions.
We must recognise that, given space, time and freedom, children generate new knowledge by engaging
with the information passed on to them by adults. Treating the prescribed textbook as the sole basis
of examination is one of the key reasons why other resources and sites of learning are ignored.
Inculcating creativity and initiative is possible if we perceive and treat children as participants in
learning, not as receivers of a fixed body of knowledge.

These aims imply considerable change in school routines and mode of functioning. Flexibility in
the daily time-table is as necessary as rigour in implementing the annual calendar so that the
required number of teaching days are actually devoted to teaching. The methods used for teaching
and evaluation will also determine how effective this textbook proves for making children’s life at
school a happy experience, rather than a source of stress or boredom. Syllabus designers have tried
to address the problem of curricular burden by restructuring and reorienting knowledge at different
stages with greater consideration for child psychology and the time available for teaching. The textbook
attempts to enhance this endeavour by giving higher priority and space to opportunities for
contemplation and wondering, discussion in small groups, and activities requiring hands-on
experience.

The National Council of Educational Research and Training (NCERT) appreciates the hard
work done by the textbook development committee responsible for this book. We wish to thank the
Chairperson of the advisory group in science and mathematics, Professor J.V. Narlikar and the
Chief Advisor for this book, Professor A.W. Joshi for guiding the work of this committee. Several
teachers contributed to the development of this textbook; we are grateful to their principals for
making this possible. We are indebted to the institutions and organisations which have generously
permitted us to draw upon their resources, material and personnel. We are especially grateful to
the members of the National Monitoring Committee, appointed by the Department of Secondary
and Higher Education, Ministry of Human Resource Development under the Chairpersonship of
Professor Mrinal Miri and Professor G.P. Deshpande, for their valuable time and contribution. As
an organisation committed to systemic reform and continuous improvement in the quality of its
products, NCERT welcomes comments and suggestions which will enable us to undertake further
revision and refinement.

Director

New Delhi National Council of Educational
20 December 2006 Research and Training
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RATIONALISATION OF CONTENT IN THE TEXTBOOKS

In view of the COVID-19 pandemic, it is imperative to reduce content load on

students. The National Education Policy 2020, also emphasises reducing the
content load and providing opportunities for experiential learning with creative
mindset. In this background, the NCERT has undertaken the exercise to rationalise
the textbooks across all classes. Learning Outcomes already developed by the NCERT
across classes have been taken into consideration in this exercise.

Contents of the textbooks have been rationalised in view of the following:

• Overlapping with similar content included in other subject areas in the same
class

• Similar content included in the lower or higher class in the same subject

• Difficulty level

• Content, which is easily accessible to students without much interventions
from teachers and can be learned by children through self-learning or peer-
learning

• Content, which is irrelevant in the present context

This present edition, is a reformatted version after carrying out the changes
given above.
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Constitution of India

Fundamental Duties

It shall be the duty of every citizen of India —

(a) to abide by the Constitution and respect its ideals and institutions, the

National Flag and the National Anthem;

(b) to cherish and follow the noble ideals which inspired our national struggle

for freedom;

(c) to uphold and protect the sovereignty, unity and integrity of India;

(d) to defend the country and render national service when called upon to

do so;

(e) to promote harmony and the spirit of common brotherhood amongst all

the people of India transcending religious, linguistic and regional or

sectional diversities; to renounce practices derogatory to the dignity of

women;

(f) to value and preserve the rich heritage of our composite culture;

(g) to protect and improve the natural environment including forests, lakes,

rivers, wildlife and to have compassion for living creatures;

(h) to develop the scientific temper, humanism and the spirit of inquiry and

reform;

(i) to safeguard public property and to abjure violence;

(j) to strive towards excellence in all spheres of individual and collective

activity so that the nation constantly rises to higher levels of endeavour

and achievement;

*(k) who is a parent or guardian, to provide opportunities for education to

his child or, as the case may be, ward between the age of six and

fourteen years.

Note: The Article 51A containing Fundamental Duties was inserted by the Constitution

(42nd Amendment) Act, 1976 (with effect from 3 January 1977).

*(k) was inserted by the Constitution (86th Amendment) Act, 2002 (with effect from

1 April 2010).

Part IV A (Article 51 A)
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CONSTITUTION OF INDIA
Part III (Articles 12 – 35)

(Subject to certain conditions, some exceptions
and reasonable restrictions)

guarantees these

Fundamental Rights

Right to Equality

· before law and equal protection of laws;

· irrespective of religion, race, caste, sex or place of birth;

· of opportunity in public employment;

· by abolition of untouchability and titles.

Right to Freedom

· of expression, assembly, association, movement, residence and profession;

· of certain protections in respect of conviction for offences;

· of protection of life and personal liberty;

· of free and compulsory education for children between the age of six and fourteen years;

· of protection against arrest and detention in certain cases.

Right against Exploitation

· for prohibition of traffic in human beings and forced labour;

· for prohibition of employment of children in hazardous jobs.

Right to Freedom of Religion

· freedom of conscience and free profession, practice and propagation of religion;

· freedom to manage religious affairs;

· freedom as to payment of taxes for promotion of any particular religion;

· freedom as to attendance at religious instruction or religious worship in educational

institutions wholly maintained by the State.

Cultural and Educational Rights

· for protection of interests of minorities to conserve their language, script and culture;

· for minorities to establish and administer educational institutions of their choice.

Right to Constitutional Remedies

· by issuance of directions or orders or writs by the Supreme Court and High

Courts for enforcement of these Fundamental Rights.
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PREFACE

It gives me pleasure to place this book in the hands of the students, teachers and the public at

large (whose role cannot be overlooked). It is a natural sequel to the Class XI textbook which
was brought out in 2006. This book is also a trimmed version of the textbooks which existed so
far. The chapter on thermal and chemical effects of current has been cut out. This topic has also

been dropped from the CBSE syllabus. Similarly, the chapter on communications has been
substantially curtailed. It has been rewritten in an easily comprehensible form.

Although most other chapters have been based on the earlier versions, several parts and

sections in them have been rewritten. The Development Team has been guided by the feedback
received from innumerable teachers across the country.

In producing these books, Class XI as well as Class XII, there has been a basic change of

emphasis. Both the books present physics to students without assuming that they would pursue
this subject beyond the higher secondary level. This new view has been prompted by the various
observations and suggestions made in the National Curriculum Framework (NCF), 2005.

Similarly, in today’s educational scenario where students can opt for various combinations of
subjects, we cannot assume that a physics student is also studying mathematics. Therefore,
physics has to be presented, so to say, in a standalone form.

As in Class XI textbook, some interesting box items have been inserted in many chapters.
They are not meant for teaching or examinations. Their purpose is to catch the attention of the
reader, to show some applications in daily life or in other areas of science and technology, to

suggest a simple experiment, to show connection of concepts in different areas of physics, and
in general, to break the monotony and enliven the book.

Features like Summary, Points to Ponder, Exercises and Additional Exercises at the end of
each chapter, and Examples have been retained. Several concept-based Exercises have been
transferred from end-of-chapter Exercises to Examples with Solutions in the text. It is hoped
that this will make the concepts discussed in the chapter more comprehensible. Several new
examples and exercises have been added. Students wishing to pursue physics further would
find Points to Ponder and Additional Exercises very useful and thoughtful. To provide resources

beyond the textbook  and to encourage eLearning, each chapter has been provided with
some relevant website addresses under the title ePhysics. These sites provide additional
material on specific topics and also provide learners with opportunites for interactive
demonstrations/experiments.

The intricate concepts of physics must be understood, comprehended and appreciated.
Students must learn to ask questions like ‘why’, ‘how’, ‘how do we know it’. They will find
almost always that the question ‘why’ has no answer within the domain of physics and science
in general. But that itself is a learning experience, is it not? On the other hand, the question
‘how’ has been reasonably well answered by physicists in the case of most natural phenomena.
In fact, with the understanding of how things happen, it has been possible to make use of many
phenomena to create technological applications for the use of humans.

For example, consider statements in a book, like ‘A negatively charged electron is attracted
by the positively charged plate’, or ‘In this experiment, light (or electron) behaves like a wave’.
You will realise that it is not possible to answer ‘why’. This question belongs to the domain of
philosophy or metaphysics. But we can answer ‘how’, we can find the force acting, we can find
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the wavelength of the photon (or electron), we can determine how things behave under different
conditions, and we can develop instruments which will use these phenomena to our advantage.

It has been a pleasure to work for these books at the higher secondary level, along with a
team of members. The Textbook Development Team, Review Team and Editing Teams involved
college and university teachers, teachers from Indian Institutes of Technology, scientists from

national institutes and laboratories, as well as, higher secondary teachers. The feedback and
critical look provided by higher secondary teachers in the various teams are highly laudable.
Most box items were generated by members of one or the other team, but three of them were

generated by friends and well-wishers not part of any team. We are thankful to Dr P.N. Sen of
Pune, Professor Roopmanjari Ghosh of Delhi and Dr Rajesh B Khaparde of Mumbai for allowing
us to use their box items, respectively, in Chapters 3, 4 (Part I) and 9 (Part II). We are thankful

to the members of the review and editing workshops to discuss and refine the first draft of the
textbook.  We also express our gratitude to Prof. Krishna Kumar, Director, NCERT, for entrusting
us with the task of presenting this textbook as a part of the national effort for improving science

education. I also thank Prof. G. Ravindra, Joint Director, NCERT,  for his help from time-to-
time. Prof. Hukum Singh, Head, Department of Education in Science and Mathematics, NCERT,
was always willing to help us in our endeavour in every possible way.

We welcome suggestions and comments from our valued users, especially students and
teachers. We wish our young readers a happy journey into the exciting realm of physics.

A. W. JOSHI

Chief Advisor

Textbook Development Committee

xii
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COVER DESIGN

(Adapted from http://nobelprize.org and

the Nobel Prize in Physics 2006)

Different stages in the evolution of

the universe.

BACK COVER

(Adapted from http://www.iter.org and

http://www.dae.gov.in)

Cut away view of International Thermonuclear Experimental Reactor (ITER)

device. The man in the bottom shows the scale.

ITER is a joint international research and development project that

aims to demonstrate the scientific and technical feasibility of fusion power.
India is one of the seven full partners in the project, the others being

the European Union (represented by EURATOM), Japan, the People’s

Republic of China, the Republic of Korea, the Russian Federation and the

USA. ITER will be constructed in Europe, at Cadarache in the South of

France and will provide 500 MW of fusion power.

Fusion is the energy source of the sun and the stars. On earth, fusion
research is aimed at demonstrating that this energy source can be used to

produce electricity in a safe and environmentally benign way, with

abundant fuel resources, to meet the needs of a growing world population.

For details of India’s role, see Nuclear India, Vol. 39, Nov. 11-12/

May-June 2006, issue available at Department of Atomic Energy (DAE)

website mentioned above.
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Chapter One

ELECTRIC CHARGES

AND FIELDS

1.1  INTRODUCTION

All of us have the experience of seeing a spark or hearing a crackle when
we take off our synthetic clothes or sweater, particularly in dry weather.
Have you ever tried to find any explanation for this phenomenon? Another
common example of electric discharge is the lightning that we see in the
sky during thunderstorms. We also experience a sensation of an electric
shock either while opening the door of a car or holding the iron bar of a
bus after sliding from our seat. The reason for these experiences is
discharge of electric charges through our body, which were accumulated
due to rubbing of insulating surfaces. You might have also heard that
this is due to generation of static electricity. This is precisely the topic we
are going to discuss in this and the next chapter. Static means anything
that does not move or change with time. Electrostatics deals with

the study of forces, fields and potentials arising from

static charges.

1.2  ELECTRIC CHARGE

Historically the credit of discovery of the fact that amber rubbed with
wool or silk cloth attracts light objects goes to Thales of Miletus, Greece,
around 600 BC. The name electricity is coined from the Greek word
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Physics

elektron meaning amber. Many such pairs of materials were known which
on rubbing could attract light objects like straw, pith balls and bits of
papers.

It was observed that if two glass rods rubbed with wool or silk cloth
are brought close to each other, they repel each other [Fig. 1.1(a)]. The
two strands of wool or two pieces of silk cloth, with which the rods were
rubbed, also repel each other. However, the glass rod and wool attracted
each other. Similarly, two plastic rods rubbed with cat’s fur repelled each
other [Fig. 1.1(b)] but attracted the fur. On the other hand, the plastic
rod attracts the glass rod [Fig. 1.1(c)] and repel the silk or wool with
which the glass rod is rubbed. The glass rod repels the fur.

These seemingly simple facts  were established from years of efforts
and careful experiments and their analyses. It was concluded, after many
careful studies by different scientists, that there were only two kinds of
an entry which is called the electric charge. We say that the bodies like
glass or plastic rods, silk, fur and pith balls are electrified. They acquire
an electric charge on rubbing. There are two kinds of electrification and
we find  that (i) like charges repel and (ii) unlike charges attract each
other. The property which differentiates the two kinds of charges is called
the polarity of charge.

When a glass rod is rubbed with silk, the rod acquires one kind of
charge and the silk acquires the second kind of charge. This is true for
any pair of objects that are rubbed to be electrified. Now if the electrified
glass rod is brought in contact with silk, with which it was rubbed, they
no longer attract each other. They also do not attract or repel other light
objects as they did on being electrified.

Thus, the charges acquired after rubbing are lost when the charged
bodies are brought in contact. What can you conclude from these
observations? It just tells us that unlike charges acquired by the objects
neutralise or nullify each other’s effect. Therefore, the charges were named
as positive and negative by the American scientist Benjamin Franklin.
By convention, the charge on glass rod or cat’s fur is called positive and
that on plastic rod or silk is termed negative. If an object possesses an
electric charge, it is said to be electrified or charged. When it has no charge
it is said to be electrically neutral.

FIGURE 1.1 Rods: like charges repel and unlike charges attract each other.
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Electric Charges

and Fields

3

A simple apparatus to detect charge on a body is the gold-leaf

electroscope [Fig. 1.2(a)]. It consists of a vertical metal rod housed in a
box, with two thin gold leaves attached to its bottom end. When a charged
object touches the metal knob at the top of the rod, charge flows on to
the leaves and they diverge. The degree of divergance is an indicator of
the amount of charge.

Try to understand why material bodies acquire charge. You know that
all matter is made up of atoms and/or molecules. Although normally the
materials are electrically neutral,  they do contain charges; but their charges
are exactly balanced. Forces that hold the molecules together, forces that
hold atoms together in a solid, the adhesive force of glue, forces associated
with surface tension, all are basically electrical in nature, arising from the
forces between charged particles. Thus the electric force is all pervasive and
it encompasses almost each and every field associated with our life. It is
therefore essential that we learn more about such a force.

To electrify a neutral body, we need to add or remove one kind of
charge. When we say that a body is charged, we always refer to this
excess charge or deficit of charge. In solids,  some of the electrons, being
less tightly bound in the atom, are the charges which are transferred
from one body to the other.  A body can thus be charged positively by
losing some of its electrons. Similarly, a body can be charged negatively
by gaining electrons. When we rub a glass rod with silk, some of the
electrons from the rod are transferred to the silk cloth. Thus the rod gets
positively charged and the silk gets negatively charged. No new charge is
created in the process of rubbing. Also the number of electrons, that are
transferred, is a very small fraction of the total number of electrons in the
material body.

1.3  CONDUCTORS AND INSULATORS

Some substances readily allow passage of electricity through them, others
do not.  Those which allow electricity to pass through them easily are
called conductors. They have electric charges (electrons) that are
comparatively free to move inside the material. Metals, human and animal
bodies and earth are conductors. Most of the non-metals like glass,
porcelain, plastic, nylon, wood offer high resistance to the passage of
electricity through them. They are called insulators. Most  substances
fall into one of the two classes stated above*.

When some charge is transferred to a conductor, it readily gets
distributed over the entire surface of the conductor. In contrast, if some
charge is put on an insulator, it stays at the same place. You will learn
why this happens in the next chapter.

This property of the materials tells you why a nylon or plastic comb
gets electrified on combing dry hair or on rubbing, but a metal article

* There is a third category called semiconductors, which offer resistance to the
movement of charges which is intermediate between the conductors and
insulators.
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like spoon does not. The charges on metal leak through
our body to the ground as both are conductors of
electricity. However, if a metal rod with a wooden or plastic
handle is rubbed without touching its metal part, it shows
signs of charging.

1.4  BASIC PROPERTIES OF ELECTRIC

CHARGE

We have seen that there are two types of charges, namely
positive and negative and their effects tend to cancel each
other. Here,  we shall now describe some other properties
of the electric charge.

If the sizes of charged bodies are very small as
compared to the distances between them, we treat them
as point charges. All the charge content of the body is
assumed to be concentrated at one point in space.

1.4.1  Additivity of charges

We have not as yet given a quantitative definition of a
charge; we shall follow it up in the next section. We shall
tentatively assume that this can be done and proceed. If
a system contains two point charges q1 and q2, the total
charge of the system is obtained simply by adding

algebraically q1 and q2 
,
 
i.e., charges add up like real numbers or they

are scalars like the mass of a body. If a system contains n charges q1,
q2, q3, …, qn, then the total charge of the system is q1 + q2 + q3 + … + qn

.  Charge has  magnitude but no direction, similar to mass. However,
there is one difference between mass and charge. Mass of a body is
always positive whereas a charge can be either positive or negative.
Proper signs have to be used while adding the charges in a system. For
example, the total charge of a system containing five charges +1, +2, –3,
+4 and –5, in some arbitrary unit, is (+1) + (+2) + (–3) + (+4) + (–5) = –1 in
the same unit.

1.4.2  Charge is conserved

We have already  hinted to the fact that when bodies are charged by
rubbing, there is transfer of electrons from one body to the other; no new
charges are either created or destroyed. A picture of particles of electric
charge enables us to understand the idea of conservation of charge. When
we rub two bodies, what one body gains in charge the other body loses.
Within an isolated system consisting of many charged bodies, due to
interactions among the bodies, charges may get redistributed but it is
found that the total charge of the isolated system is always conserved.
Conservation of charge has been established experimentally.

It is not possible to create or destroy net charge carried by any isolated
system although the charge carrying particles may be created or destroyed

FIGURE 1.2 Electroscopes: (a)
The gold leaf electroscope, (b)

Schematics of a simple
electroscope.
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in a process. Sometimes nature creates charged particles: a neutron turns
into a proton and an electron. The proton and electron thus created have
equal and opposite charges and the total charge is zero before and after
the creation.

1.4.3  Quantisation of charge

Experimentally it is established that all free charges are integral multiples
of a basic unit of charge denoted by e. Thus charge q on a body is always
given by

q = ne

where n is any integer, positive or negative. This basic unit of charge is
the charge that an electron or proton carries. By convention, the charge
on an electron is taken to be negative; therefore charge on an electron is
written as –e and that on a proton as +e.

The fact that electric charge is always an integral multiple of e is termed
as quantisation of charge. There are a large number of situations in physics
where certain physical quantities are quantised. The quantisation of charge
was first suggested by the experimental laws of electrolysis discovered by
English experimentalist Faraday. It was experimentally demonstrated by
Millikan in 1912.

In the International System (SI) of Units, a unit of charge is called a
coulomb and is denoted by the symbol C. A coulomb is defined in terms
the unit of the electric current which you are going to learn in a
subsequent chapter. In terms of this definition, one coulomb is the charge
flowing through a wire in 1 s if the current is 1 A (ampere), (see Chapter 1
of Class XI, Physics Textbook , Part I). In this system, the value of the
basic unit of charge is

e = 1.602192 × 10–19 C

Thus, there are about 6 × 1018 electrons in a charge of  –1C. In
electrostatics, charges of this large magnitude are seldom encountered
and hence we use smaller units 1 mC (micro coulomb) = 10–6 C or 1 mC
(milli coulomb) = 10–3 C.

If the protons and electrons are the only basic charges in the
universe, all the observable charges have to be integral multiples of e.
Thus, if a body contains n1 electrons and n2 protons, the total amount
of charge on the body is n2 × e + n1 × (–e) = (n2 – n1) e. Since n1 and n2
are integers, their difference is also an integer. Thus the charge on any
body is always an integral multiple of e and can be increased or
decreased also in steps of e.

The step size e is, however, very small because at the macroscopic
level, we deal with charges of a few mC. At this scale the fact that charge of
a body can increase or decrease in units of e is not visible. In this respect,
the grainy nature of the charge is lost and it appears to be continuous.

This situation can be compared with the geometrical concepts of points
and lines. A dotted line viewed from a distance appears continuous to
us but is not continuous in reality. As many points very close to
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each other normally give an impression of a continuous line, many
small charges taken together appear as a continuous charge distribution.

At the macroscopic level, one deals with charges that are enormous
compared to the magnitude of charge e. Since e = 1.6 × 10–19 C, a charge
of magnituOde, say 1 mC, contains something like 1013 times the electronic
charge. At this scale, the fact that charge can increase or decrease only in
units of e is not very different from saying that charge can take continuous
values. Thus, at the macroscopic level, the quantisation of charge has no
practical consequence and can be ignored. However, at the microscopic
level, where the charges involved are of the order of a few tens or hundreds
of e, i.e., they can be counted, they appear in discrete lumps and
quantisation of charge cannot be ignored. It is the magnitude of scale
involved that is very important.

Example 1.1 If 109 electrons move out of a body to another body
every second, how much time is required to get a total charge of 1 C
on the other body?

Solution In one second 109 electrons move out of the body. Therefore
the charge given out in one second is 1.6 × 10–19 × 109 C = 1.6 × 10–10 C.
The time required to accumulate a charge of 1 C can then be estimated
to be 1 C ÷ (1.6 × 10–10 C/s) = 6.25 × 109 s = 6.25 × 109 ÷ (365  × 24 ×
3600) years = 198 years. Thus to collect a charge of one coulomb,
from a body from which 109 electrons move out every second, we will
need approximately 200 years. One coulomb is, therefore, a very large
unit for many practical purposes.
It is, however, also important to know what is roughly the number of
electrons contained in a piece of one cubic centimetre of a material.
A cubic piece of copper of side 1 cm contains about 2.5 × 1024

electrons.

Example 1.2 How much positive and negative charge is there in a
cup of water?

Solution Let us assume that the mass of one cup of water is
250 g. The molecular mass of water is 18g. Thus, one mole
(= 6.02 × 1023 molecules) of water is 18 g. Therefore the number of
molecules in one cup of water is (250/18) × 6.02 × 1023.
Each molecule of water contains two hydrogen atoms and one oxygen
atom, i.e., 10 electrons and 10 protons. Hence the total positive and
total negative charge has the same magnitude. It is equal to
(250/18) × 6.02 × 1023 × 10 × 1.6 × 10–19 C = 1.34 × 107 C.

1.5  COULOMB’S LAW

Coulomb’s law is a quantitative statement about the force between two
point charges. When the linear size of charged bodies are much smaller
than the distance separating them, the size may be ignored and the
charged bodies are treated as point charges. Coulomb measured the
force between two point charges and found that it varied inversely as

the square of the distance between the charges and was directly

proportional to the product of the magnitude of the two charges and

2024-252024-25



Electric Charges

and Fields

7

acted along the line joining the two charges. Thus, if two
point charges q1, q2 are separated by a distance r in vacuum,
the magnitude of the force (F) between them is given by

21
2

q q
F k

r
= (1.1)

How did Coulomb arrive at this law from his experiments?
Coulomb used a torsion balance*  for measuring the force
between two charged metallic spheres. When the separation
between two spheres is much larger than the radius of each
sphere, the charged spheres may be regarded as point charges.
However, the charges on the spheres were unknown, to begin
with. How then could he discover a relation like Eq. (1.1)?
Coulomb thought of the following simple way: Suppose the
charge on a metallic sphere is q. If the sphere is put in contact
with an identical uncharged sphere, the charge will spread over
the two spheres. By symmetry, the charge on each sphere will
be q/2*. Repeating this process, we can get charges q/2, q/4,
etc. Coulomb varied the distance for a fixed pair of charges and
measured the force for different separations. He then varied the
charges in pairs, keeping the distance fixed for each pair.
Comparing forces for different pairs of charges at different
distances, Coulomb arrived at the relation, Eq. (1.1).

Coulomb’s law, a simple mathematical statement,  was
initially experimentally arrived at  in the manner described
above. While the original experiments established it at a
macroscopic scale, it has also been established down to
subatomic level  (r ~ 10–10 m).

Coulomb discovered his law without knowing the explicit

magnitude of the charge. In fact, it is the other way round:
Coulomb’s law can now be employed to furnish a definition
for a unit of charge. In the relation, Eq. (1.1), k is so far
arbitrary. We can choose any positive value of k. The choice
of k determines the size of the unit of charge. In SI units, the

value of k is about 9 × 109 
2

2

Nm
C

. The unit of charge that

results from this choice is called a coulomb which we defined
earlier in Section 1.4. Putting this value of k in Eq. (1.1), we
see that for q1 = q2 = 1 C, r = 1 m

F = 9 × 109 N
That is, 1 C is the charge that when placed at a distance

of 1 m from another charge of the same magnitude in vacuum

experiences an electrical force of repulsion of magnitude

* A torsion balance is a sensitive device to measure force. It was also used later
by Cavendish to measure the very feeble gravitational force between two objects,
to verify Newton’s Law of Gravitation.

* Implicit in this is the assumption of additivity of charges and conservation:
two charges (q/2 each) add up to make a total charge q.

Charles Augustin de
Coulomb (1736 – 1806)
Coulomb, a French
physicist, began his
career as a military
engineer in the West
Indies. In 1776, he
returned to Paris and
retired to a small estate
to do his scientific
research. He invented a
torsion balance to
measure the quantity of
a force and used it for
determination of forces
of electric attraction or
repulsion between small
charged spheres. He
thus arrived in 1785 at
the inverse square law
relation, now known as
Coulomb’s law. The law
had been anticipated by
Priestley and also by
Cavendish earlier,
though Cavendish
never published his
results. Coulomb also
found the inverse
square law of force
between unlike and like
magnetic poles.
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9 × 109 N. One coulomb is evidently too big a unit to
be used. In practice, in electrostatics, one uses
smaller units like 1 mC or 1 mC.

The constant k in Eq. (1.1) is usually put as
k = 1/4pe0 for later convenience, so that Coulomb’s
law is written as

0

1 2
2

1
4

q q
F

rε
=

π (1.2)

e0 is called the permittivity of free space . The value
of e0 in SI units is

0
 = 8.854 × 10–12 C2 N–1m–2

Since force is a vector, it is better to write
Coulomb’s law in the vector notation. Let the position
vectors of charges q1 and q2 be r1 and r2 respectively
[see Fig.1.3(a)]. We denote force on q1 due to q2 by
F12 and force on q2 due to q1 by F21. The two point
charges q1 and q2 have been numbered 1 and 2 for
convenience and the vector leading from 1 to 2 is

denoted by r21:

r21 = r2 – r1

In the same way, the vector leading from 2 to 1 is denoted by r12:

r12 = r1 – r2 = – r21

The magnitude of the vectors r21 and r12 is denoted by r21 and r12,
respectively (r12 = r21). The direction of a vector is specified by a unit
vector along the vector. To denote the direction from 1 to 2 (or from 2 to
1), we define the unit vectors:

ɵ 21
21

21

= r
r

r , ɵ ɵ ɵ12
12 21 12

12

,= −
r

r r r
r

Coulomb’s force law between two point charges q1 and q2 located at
r1 and r2, respectively is then expressed as

ɵ1 2
2121 2

21

1
4 ε

=
π

F r
o

q q

r
(1.3)

Some remarks on Eq. (1.3) are relevant:

· Equation (1.3) is valid for any sign of q1 and q2 whether positive or
negative. If q1 and q2 are of the same sign (either both positive or both
negative), F21 is along r̂ 21, which denotes repulsion, as it should be for
like charges. If q1 and q2 are of opposite signs, F21 is along – ɵr 21(= ɵr 12),
which denotes attraction, as expected for unlike charges. Thus, we do
not have to write separate equations for the cases of like and unlike
charges. Equation (1.3) takes care of both cases correctly [Fig. 1.3(b)].

FIGURE 1.3 (a) Geometry and
(b) Forces between charges.
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· The force F12  on charge q1 due to charge q2, is obtained from Eq. (1.3),
by simply interchanging 1 and 2, i.e.,

1 2
12 12 212

0 12

1
ˆ

4 ε
= = −

π
F r F

q q

r

Thus, Coulomb’s law agrees with the Newton’s third law.

· Coulomb’s law [Eq. (1.3)] gives the force between two charges q1 and
q2 in vacuum. If the charges are placed in matter or the intervening
space has matter, the situation gets complicated due to the presence
of charged constituents of matter. We shall consider electrostatics in
matter in the next chapter.

Example 1.3 Coulomb’s law for electrostatic force between two point
charges and Newton’s law for gravitational force between two stationary
point masses, both have inverse-square dependence on the distance
between the charges and masses respectively. (a) Compare the strength
of these forces by determining the ratio of their magnitudes (i) for an
electron and a proton and (ii) for two protons. (b) Estimate the
accelerations of electron and proton due to the electrical force of their
mutual attraction when they are 1 Å (= 10-10 m) apart? (m

p
 = 1.67 ×

10–27 kg, m
e
 = 9.11 × 10–31 kg)

Solution
(a) (i) The electric force between an electron and a proton at a distance

r apart is:
2

2
0

1
4e

e
F

rε
= −

π
where the negative sign indicates that the force is attractive. The
corresponding gravitational force (always attractive) is:

2
p e

G

m m
F G

r
= −

where m
p
 and m

e
 are the masses of a proton and an electron

respectively.
2

39

0

2.4 10
4

e

G p e

F e

F Gm mε
= = ×

π
(ii) On similar lines, the ratio of the magnitudes of electric force
to the gravitational force between two protons at a distance r

apart is:

F

F

e

Gm m

e

G p p

= =
2

04πε

 1.3 × 1036

However, it may be mentioned here that the signs of the two forces
are different. For two protons,  the gravitational force is attractive
in nature and the Coulomb force is repulsive. The actual values
of these forces between two protons inside a nucleus (distance
between two protons is ~ 10-15 m inside a nucleus) are Fe ~ 230 N,
whereas, FG ~ 1.9 × 10–34 N.
The (dimensionless) ratio of the two forces shows that electrical
forces are enormously stronger than the gravitational forces.
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 (b) The electric force F exerted by a proton on an electron is same in
magnitude to the force exerted by an electron on a proton; however,
the masses of an electron and a proton are different. Thus, the
magnitude of force is

|F| = 
1

4 0

2

2πε

e

r
 = 8.987 × 109 Nm2/C2 × (1.6 ×10–19C)2 / (10–10m)2

        = 2.3 × 10–8 N
Using Newton’s second law of motion, F = ma, the acceleration
that an electron will undergo is
a = 2.3×10–8 N / 9.11 ×10–31 kg = 2.5 × 1022 m/s2

Comparing this with the value of acceleration due to gravity, we
can conclude that the effect of gravitational field is negligible on
the motion of electron and it undergoes very large accelerations
under the action of Coulomb force due to a proton.
The value for acceleration of the proton is

2.3 × 10–8 N / 1.67 × 10–27 kg = 1.4 × 1019 m/s2
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FIGURE 1.4

Example 1.4 A charged metallic sphere A is suspended by a nylon
thread. Another charged metallic sphere B held by an insulating
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handle is brought close to A such that the distance between their
centres is 10 cm, as shown in Fig. 1.4(a). The resulting repulsion of A
is noted (for example, by shining a beam of light and measuring the
deflection of its shadow on a screen). Spheres A and B are touched
by uncharged spheres C and D respectively, as shown in Fig. 1.4(b).
C and D are then removed and B is brought closer to A to a
distance of 5.0 cm between their centres, as shown in Fig. 1.4(c).
What is the expected repulsion of A on the basis of Coulomb’s law?
Spheres A and C and spheres B and D have identical sizes. Ignore
the sizes of A and B in comparison to the separation between their
centres.
Solution Let the original charge on sphere A be q and that on B be
q¢. At a distance r between their centres, the magnitude of the
electrostatic force on each is given by

F
qq

r
= ′1

4 0
2πε

neglecting the sizes of spheres A and B in comparison to r. When an
identical but uncharged sphere C touches A, the charges redistribute
on A and C and, by symmetry, each sphere carries a charge q/2.
Similarly, after D touches B, the redistributed charge on each is
q¢/2. Now, if the separation between A and B is halved, the magnitude
of the electrostatic force on each is

′ = ′ = ′ =F
q q

r

qq

r
F

1
4

2 2
2

1
40

2
0

2π πε ε

( / )( / )
( / )

( )

Thus the electrostatic force on A, due to B, remains unaltered.

1.6  FORCES BETWEEN MULTIPLE CHARGES

The mutual electric force between two charges is given by
Coulomb’s law. How to calculate the force on a charge where
there are not one but several charges around? Consider a
system of n stationary charges q1, q2, q3, ..., qn

 in vacuum.
What is the force on q1 due to q2, q3, ..., qn

? Coulomb’s law is
not enough to answer this question.  Recall that forces of
mechanical origin add according to the parallelogram law of
addition. Is the same true for forces of electrostatic origin?

Experimentally, it is verified that force on any charge due

to a number of other charges is the vector sum of all the forces

on that charge due to the other charges, taken one at a time.
The individual forces are unaffected due to the presence of

other charges. This is termed as the principle of superposition.
To better understand the concept, consider a system of

three charges q1, q2 and q3, as shown in Fig. 1.5(a). The force
on one charge, say q1, due to two other charges q2, q3 can
therefore be obtained by performing a vector addition of the
forces due to each one of these charges. Thus, if the force on q1
due to q2 is denoted by F12, F12 is given by Eq. (1.3)  even
though other charges are present.

Thus, F12 = 1
4 0

1 2

12
2 12πε

q q

r
r̂

FIGURE 1.5 A system of
(a) three charges
(b) multiple charges.
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In the same way, the force on q1 due to q3, denoted by F13, is given by

F r13
0

1 3

13
2 13

1
4

=
πε

q q

r
ˆ

which again is the Coulomb force on q1 due to q3, even though other
charge q2 is present.

Thus the total force F1 on q1 due to the two charges q2 and q3 is
given as

F F F r r1 12 13
0

1 2

12
2 12

0

1 3

13
2 13

1
4

1
4

= + = +
π πε ε

q q

r

q q

r
ˆ ˆ (1.4)

The above calculation of force can be generalised to a system of
charges more than three, as shown in Fig. 1.5(b).

The principle of superposition says that in a system of charges q1,
q2, ..., qn

, the force on q1 due to q2 is the same as given by Coulomb’s law,
i.e., it is unaffected by the presence of the other charges q3, q4, ..., qn

. The
total force F1 on the charge q1, due to all other charges, is then given by
the vector sum of the forces F12, F13, ...,  F1n

:

i.e.,

F F F F r r1 12 13 1n =   +  + ...+  = +1
4 0

1 2

12
2 12

1 3

13
2 13πε

q q

r

q q

r
ˆ ˆ ++ +









... ˆ

q q

r

n

n

n
1

1
2 1r

=
=
∑q q

r

i

ii

n

i
1

0 1
2

2
14πε

r̂ (1.5)

The vector sum is obtained as usual by the parallelogram law of
addition of vectors. All of electrostatics is basically a consequence of
Coulomb’s law and the superposition principle.

Example 1.5 Consider three charges q1, q2, q3 each equal to q at the
vertices of an equilateral triangle of side l. What is the force on a
charge Q (with the same sign as q) placed at the centroid of the
triangle, as shown in Fig. 1.6?

FIGURE 1.6

Solution In the given equilateral triangle ABC of sides of length l, if
we draw a perpendicular AD to the side BC,
AD = AC cos 30º = ( 3 /2 ) l  and the distance AO of the centroid O
from A is (2/3) AD = (1/ 3 ) l. By symmatry AO = BO = CO.
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Thus,

Force F
1
 on Q due to charge q at A  = 

3
4 0

2πε

Qq

l
 along AO

Force F
2 

on Q due to charge q at B  = 
3

4 0
2πε

Qq

l
 along BO

Force F
3 

on Q due to charge q at C  = 
3

4 0
2πε

Qq

l
 along CO

The resultant of forces F
2
 and F

3
 is 

3
4 0

2πε

Qq

l
 along OA, by the

parallelogram law. Therefore, the total force on Q = 
3

4 0
2πε

Qq

l
ˆ ˆr r−( )

 = 0, where r̂ is the unit vector along OA.
It is clear also by symmetry that the three forces will sum to zero.
Suppose that the resultant force was non-zero but in some direction.
Consider what would happen if the system was rotated through 60°
about O.

Example 1.6 Consider the charges q, q, and –q placed at the vertices
of an equilateral triangle, as shown in Fig. 1.7. What is the force on
each charge?

FIGURE 1.7

Solution  The forces acting on charge q at A due to charges q at B
and –q at C are F12 along BA and F13 along AC respectively, as shown
in Fig. 1.7. By the parallelogram law, the total force F1 on the charge
q at A is given by

F1 = F 1̂r  where 1̂r  is a unit vector along BC.
The force of attraction or repulsion for each pair of charges has the

same magnitude F
q=

2

0
24 π ε l

The total force F2 on charge q at B is thus F
2
 = F r̂

2, where r̂
2 is a

unit vector along AC.
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Similarly the total force on charge –q at C is F3  = 3  F n̂ , where n̂ is
the unit vector along the direction bisecting the ÐBCA.
It is interesting to see that the sum of the forces on the three charges
is zero, i.e.,

F1 + F2 + F3 = 0

The result is not at all surprising. It follows straight from the fact
that Coulomb’s law is consistent with Newton’s third law. The proof
is left to you as an exercise.

1.7  ELECTRIC FIELD

Let us consider a point charge Q placed in vacuum, at the origin O. If we
place another point charge q at a point P, where OP = r, then the charge Q
will exert a force on q as per Coulomb’s law. We may ask the question: If
charge q is removed, then what is left in the surrounding? Is there
nothing? If there is nothing at the point P, then how does a force act
when we place the charge q at P. In order to answer such questions, the
early scientists introduced the concept of field. According to this, we say
that the charge Q produces an electric field everywhere in the surrounding.
When another charge q is brought at some point P, the field there acts on
it and produces a force. The electric field produced by the charge Q  at a
point r is given as

E r r r( ) = =
1

4
1

40
2

0
2π πε ε

Q

r

Q

r
ˆ ˆ (1.6)

where ˆ =r  r/r, is a unit vector from the origin to the point r. Thus, Eq.(1.6)
specifies the value of the electric field for each value of the position
vector r. The word “field” signifies how some distributed quantity (which
could be a scalar or a vector) varies with position. The effect of the charge
has been incorporated in the existence of the electric field. We obtain the
force F

 
exerted by a

 
charge Q on a charge q, as

F r=
1

4 0
2πε

Qq

r
ˆ (1.7)

Note that the charge q also exerts an equal and opposite force on the
charge Q. The electrostatic force between the charges Q and q can be
looked upon as an interaction between charge q and the electric field of
Q and vice versa. If we denote the position of charge q by the vector r, it
experiences a force F equal to the charge q multiplied by the electric
field E at the location of q. Thus,

F(r) = q E(r) (1.8)
Equation (1.8) defines the SI unit of electric field as N/C*.
Some important remarks may be made here:

(i) From Eq. (1.8), we can infer that if q is unity, the electric field due to
a charge Q is numerically equal to the force exerted by it. Thus, the
electric field due to a charge Q at a point in space may be defined

as the force that a unit positive charge would experience if placed

* An alternate unit V/m will be introduced in the next chapter.

FIGURE 1.8 Electric
field (a) due to a

charge Q, (b) due to a
charge –Q.
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at that point. The charge Q, which is producing the electric field, is
called a source charge and the charge q, which tests the effect of a
source charge, is called a test charge. Note that the source charge Q
must remain at its original location. However, if a charge q is brought
at any point around Q, Q itself is bound to experience an electrical
force due to q and will tend to move. A way out of this difficulty is to
make q negligibly small. The force F is then negligibly small but the
ratio F/q is finite and defines the electric field:

E
F=





→

lim
q q0

(1.9)

A practical way to get around the problem (of keeping Q undisturbed
in the presence of q) is to hold Q to its location by unspecified forces!
This may look strange but actually this is what happens in practice.
When we are considering the electric force on a test charge q due to a
charged planar sheet (Section 1.14), the charges on the sheet are held to
their locations by the forces due to the unspecified charged constituents
inside the sheet.
(ii) Note that the electric field E due to Q, though defined operationally in

terms of some test charge q, is independent of q. This is because
F is proportional to q, so the ratio F/q does not depend on q. The
force F on the charge q due to the charge Q depends on the particular
location of charge q which may take any value in the space around
the charge Q. Thus, the electric field E due to Q is also dependent on
the space coordinate r. For different positions of the charge q all over
the space, we get different values of electric field E. The field exists at
every point in three-dimensional space.

(iii) For a positive charge, the electric field will be directed radially
outwards from the charge. On the other hand, if the source charge is
negative, the electric field vector, at each point, points radially inwards.

(iv) Since the magnitude of the force F on charge q due to charge Q
depends only on the distance r of the charge q from charge Q,
the magnitude of the electric field E will also depend only on the
distance r. Thus at equal distances from the charge Q, the magnitude
of its electric field E is same. The magnitude of electric field E due to
a point charge is thus same on a sphere with the point charge at its
centre; in other words, it has a spherical symmetry.

1.7.1  Electric field due to a system of charges

Consider a system of charges q1, q2, ..., qn
 with  position vectors r1,

r2, ..., rn
 relative  to some origin O. Like the electric field at a point in

space due to a single charge, electric field at a point in space due to the
system of charges is defined to be the force experienced by a unit
test charge placed at that point, without disturbing the original
positions of charges q1, q2, ..., qn

. We can use Coulomb’s law and the
superposition principle to determine this field at a point P denoted by
position vector r.
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Electric field E1 at r due to q1 at r1 is given by

E1 = 
1

4 0

1

1

2πε

q

r P

1P
r̂

where 1Pr̂  is a unit vector in the direction from q1 to P,
and r1P is the distance between q1 and P.
In the same manner, electric field E2 at r due to q2 at
r2 is

E2 = 
1

4 0

2

2

2πε

q

r P

2P
r̂

where 2Pr̂  is a unit vector in the direction from q2 to P
and r2P is the distance between q

2
 and P. Similar

expressions hold good for fields E3, E4, ..., En
 due to

charges q3, q4, ..., qn
.

By the superposition principle, the electric field E at r
due to the system of charges is (as shown in Fig. 1.9)

E(r)  =  E1 (r) +  E2 (r)  + …  +  En(r)

        =
1

4
1

4
1

40

1

1
2 1

0

2

2
2 2

0
2π π πε ε ε

q

r

q

r

q

r

n

n

n

P
P

P
P

P
Pˆ ˆ ... ˆr r r+ + +

E(r) =
=
∑ 

1
4 0 P

i Pπε

q

r

i

ii

n

2
1

r̂ (1.10)

E is a vector quantity that varies from one point to another point in space
and is determined from the positions of the source charges.

1.7.2  Physical significance of electric field

You may wonder why the notion of electric field has been introduced
here at all. After all, for any system of charges, the measurable quantity
is the force on a charge which can be directly determined using Coulomb’s
law and the superposition principle [Eq. (1.5)]. Why then introduce this
intermediate quantity called the electric field?

For electrostatics, the concept of electric field is convenient, but not
really necessary. Electric field is an elegant way of characterising the
electrical environment of a system of charges. Electric field at a point in
the space around a system of charges tells you the force a unit positive
test charge would experience if placed at that point (without disturbing
the system). Electric field is a characteristic of the system of charges and
is independent of the test charge that you place at a point to determine
the field. The term field in physics generally refers to a quantity that is
defined at every point in space and may vary from point to point. Electric
field is a vector field, since force is a vector quantity.

The true physical significance of the concept of electric field, however,
emerges only when we go beyond electrostatics and deal with time-
dependent electromagnetic phenomena. Suppose we consider the force
between two distant charges q1, q2 in accelerated motion. Now the greatest
speed with which a signal or information can go from one point to another
is c, the speed of light. Thus, the effect of any motion of q1 on q2 cannot

FIGURE 1.9 Electric field at a point
due to a system of charges is the
vector sum of the electric fields at

the point due to individual charges.
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arise instantaneously. There will be some time delay between the effect
(force on q2) and the cause (motion of q1). It is precisely here that the
notion of electric field (strictly, electromagnetic field) is natural and very
useful. The field picture is this: the accelerated motion of charge q1
produces electromagnetic waves, which then propagate with the speed

c, reach q2 and cause a force on q2. The notion of field elegantly accounts
for the time delay. Thus, even though electric and magnetic fields can be
detected only by their effects (forces) on charges, they are regarded as
physical entities, not merely mathematical constructs. They have an
independent dynamics of their own,  i.e., they evolve according to laws
of their own. They can also transport energy. Thus, a source of time-
dependent electromagnetic fields, turned on for a short interval of time
and then switched off, leaves behind propagating electromagnetic fields
transporting energy. The concept of field was first introduced by Faraday
and is now among the central concepts in physics.

Example 1.7 An electron falls through a distance of 1.5 cm in a
uniform electric field of magnitude 2.0 × 104 N C–1 [Fig. 1.10(a)]. The
direction of the field is reversed keeping its magnitude unchanged
and a proton falls through the same distance [Fig. 1.10(b)]. Compute
the time of fall in each case. Contrast the situation with that of ‘free
fall under gravity’.

FIGURE 1.10

Solution In Fig. 1.10(a) the field is upward, so the negatively charged
electron experiences a downward force of magnitude eE where E is
the magnitude of the electric field. The acceleration of the electron is

a
e
  =  eE/m

e

where m
e
 is the mass of the electron.

Starting from rest, the time required by the electron to fall through a

distance h is given by  
22

e

e

e

h mh
t

a e E
= =

For e = 1.6 × 10–19C, me = 9.11 × 10–31 kg,

     E = 2.0 × 104 N C–1, h = 1.5 × 10–2 m,

  te = 2.9 × 10–9s

In Fig. 1.10 (b), the field is downward, and the positively charged
proton experiences a downward force of magnitude eE . The
acceleration of the proton is

a
p
  =  eE/m

p

where m
p
 is the mass of the proton; m

p
 = 1.67 × 10–27 kg. The time of

fall for the proton is
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p

p

h mh
t .

a e E
= = = ×

Thus, the heavier particle (proton) takes a greater time to fall through
the same distance. This is in basic contrast to the situation of ‘free
fall under gravity’ where the time of fall is independent of the mass of
the body. Note that in this example we have ignored the acceleration
due to gravity in calculating the time of fall. To see if this is justified,
let us calculate the acceleration of the proton in the given electric
field:

p

p

e E
a

m
=

     
19 4 1

27

(1 6 10 C) (2 0 10 N C )
1 67 10 kg

. .

.

− −

−
× × ×

=
×

     12 –21 9 10 m s.= ×
which is enormous compared to the value of g (9.8 m s–2), the
acceleration due to gravity. The acceleration of the electron is even
greater. Thus, the effect of acceleration due to gravity can be ignored
in this example.

Example 1.8 Two point charges q1 and q2, of magnitude +10–8 C and
–10–8 C, respectively, are placed 0.1 m apart. Calculate the electric
fields at points A, B and C shown in Fig. 1.11.

FIGURE 1.11

Solution The electric field vector E1A at A due to the positive charge
q1 points towards the right and has a magnitude

9 2 -2 8

1A 2

(9 10 Nm C ) (10 C)
(0.05m)

E
−× ×

=  =  3.6 × 104  N C–1

The electric field vector E2A at A due to the negative charge q2 points
towards the right and has the same magnitude. Hence the magnitude
of the total electric field EA at A is

EA = E1A + E2A = 7.2 × 104 N C–1

EA is directed toward the right.
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The electric field vector E1B at B due to the positive charge q1 points
towards the left and has a magnitude

9 2 –2 8

1B 2

(9 10 Nm C ) (10 C)
(0.05 m)

E
−× ×

= = 3.6 × 104 N C–1

The electric field vector E2B at B due to the negative charge q2 points
towards the right and has a magnitude

9 2 –2 8

2B 2

(9 10 Nm C ) (10 C)
(0.15 m)

E
−× ×

= =  4 × 103  N C–1

The magnitude of the total electric field at B is
EB = E1B –  E2B = 3.2 × 104 N C–1

EB is directed towards the left.
The magnitude of each electric field vector at point C, due to charge
q1 and q2 is

     
9 2 –2 8

1C 2C 2

(9 10 Nm C ) (10 C)
(0.10 m)

E E
−× ×

= =  =  9 × 103  N C–1

The directions in which these two vectors point are indicated in
Fig. 1.11. The resultant of these two vectors is

1 2cos cos
3 3
π π

= +C c cE E E =  9 × 103  N C–1

EC points towards the right.

1.8  ELECTRIC FIELD LINES

We have studied electric field in the last section. It is a vector quantity
and can be represented as we represent vectors. Let us try to represent E
due to a point charge pictorially. Let the point charge be placed at the
origin. Draw vectors pointing along the direction of the
electric field with their lengths proportional to the strength
of the field at each point. Since the magnitude of electric
field at a point decreases inversely as the square of the
distance of that point from the charge, the vector gets
shorter as one goes away from the origin, always pointing
radially outward. Figure 1.12 shows such a picture.  In
this figure, each arrow indicates the electric field, i.e., the
force acting on a unit positive charge, placed at the tail of
that arrow.  Connect the arrows pointing in one direction
and the resulting figure represents a field line. We thus
get many field lines, all pointing outwards from the point
charge. Have we lost the information about the strength
or magnitude of the field now, because it was contained
in the length of the arrow? No. Now the magnitude of the
field is represented by the density of field lines. E is strong
near the charge, so the density of field lines is more near
the charge and the lines are closer. Away from the charge,
the field gets weaker and the density of field lines is less,
resulting in well-separated lines.

Another person may draw more lines. But the number of lines is not
important. In fact, an infinite number of lines can be drawn in any region.

FIGURE 1.12 Field of a point charge.
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It is the relative density of lines in different regions which is
important.

We draw the figure on the plane of paper, i.e., in two-
dimensions but we live in three-dimensions. So if one wishes
to estimate the density of field lines, one has to consider the
number of lines per unit cross-sectional area, perpendicular
to the lines.  Since the electric field decreases as the square of
the distance from a point charge and the area enclosing the
charge increases as the square of the distance, the number
of field lines crossing the enclosing area remains constant,
whatever may be the distance of the area from the charge.

We started by saying that the field lines carry information
about the direction of electric field at different points in space.
Having drawn a certain set of field lines, the relative density
(i.e., closeness) of the field lines at different points indicates
the relative strength of electric field at those points. The field
lines crowd where the field is strong and are spaced apart
where it is weak. Figure 1.13 shows a set of field lines. We

can imagine two equal and small elements of area placed at points R and
S normal to the field lines there. The number of field lines in our picture
cutting the area elements is proportional to the magnitude of field at
these points. The picture shows that the field at R is stronger than at S.

To understand the dependence of the field lines on the area, or rather
the solid angle subtended by an area element, let us try to relate the
area with the solid angle, a generalisation of angle to three dimensions.
Recall how a (plane) angle is defined in two-dimensions. Let a small
transverse line element Dl be placed at a distance r from a point O. Then
the angle subtended by Dl  at O can be approximated as Dq = Dl/r.
Likewise, in three-dimensions the solid angle* subtended by a small
perpendicular plane area DS, at a distance r, can be written as
DW = DS/r2. We know that in a given solid angle the number of radial
field lines is the same. In Fig. 1.13, for two points P1 and P2 at distances
r1 and r2 from the charge, the element of area subtending the solid angle
DW is 2

1r DW at P1 and an element of area 2
2r DW at P2, respectively. The

number of lines (say n) cutting these area elements are the same. The
number of field lines, cutting unit area element is therefore n/( 2

1r DW) at
P1 and n/( 2

2r DW) at P2, respectively. Since n and DW are common, the
strength of the field clearly has a 1/r 2 dependence.

The picture of field lines was invented by Faraday to develop an
intuitive non-mathematical way of visualising electric fields around
charged configurations. Faraday called them lines of force. This term is

somewhat misleading, especially in case of magnetic fields. The more

appropriate term is field lines (electric or magnetic) that we have

adopted in this book.

Electric field lines are thus a way of pictorially mapping the electric
field around a configuration of charges. An electric field line is, in general,

FIGURE 1.13  Dependence of
electric field strength on the

distance and its relation to the
number of field lines.

* Solid angle is a measure of a cone. Consider the intersection of the given cone
with a sphere of radius R. The solid angle DW of the cone is defined to be equal
to DS/R

2, where DS is the area on the sphere cut out by the cone.
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a curve drawn in such a way that the tangent to it at each
point is in the direction of the net field at that point. An
arrow on the curve is obviously necessary to specify the
direction of electric field from the two possible directions
indicated by a tangent to the curve. A field line is a space
curve, i.e., a curve in three dimensions.

Figure 1.14 shows the field lines around some simple
charge configurations. As mentioned earlier, the field lines
are in 3-dimensional space, though the figure shows them
only in a plane. The field lines of a single positive charge
are radially outward while those of a single negative
charge are radially inward. The field lines around a system
of two positive charges (q, q) give a vivid pictorial
description of their mutual repulsion, while those around
the configuration of two equal and opposite charges
(q, –q), a dipole, show clearly the mutual attraction
between the charges. The field lines follow some important
general properties:
(i) Field lines start from positive charges and end at

negative charges. If there is a single charge, they may
start or end at infinity.

(ii) In a charge-free region, electric field lines can be taken
to be continuous curves without any breaks.

(iii) Two field lines can never cross each other. (If they did,
the field at the point of intersection will not have a
unique direction, which is absurd.)

(iv) Electrostatic field lines do not form any closed loops.
This follows from the conservative nature of electric
field (Chapter 2).

1.9  ELECTRIC FLUX

Consider flow of a liquid with velocity v, through a small
flat surface dS, in a direction normal to the surface. The
rate of flow of liquid is given by the volume crossing the
area per unit time  v dS and represents the flux of liquid
flowing across the plane. If the normal to the surface is
not parallel to the direction of flow of liquid, i.e., to v, but
makes an angle q with it, the projected area in a plane

perpendicular to v is δ dS cos q. Therefore, the flux going
out of the surface dS is v. n̂ dS. For the case of  the electric
field, we define an analogous quantity and call it electric
flux. We should, however, note that there is no flow of a
physically observable quantity unlike the case of
liquid flow.

In the picture of electric field lines described above,
we saw that the number of field lines crossing a unit area,
placed normal to the field at a point is a measure of the
strength of electric field at that point. This means that if

FIGURE 1.14 Field lines due to
some simple charge configurations.
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we place a small planar element of area DS

normal to E at a point, the number of field lines
crossing it is proportional* to E DS. Now
suppose we tilt the area element by angle q.
Clearly, the number of field lines crossing the
area element will be smaller. The projection of
the area element normal to E is DS cosq. Thus,
the number of field lines crossing DS is
proportional to E DS cosq. When q = 90°, field
lines will be parallel to DS and will not cross it
at all (Fig. 1.15).

The orientation of area element and not
merely its magnitude is important in many
contexts. For example, in a stream, the amount
of water flowing through a ring will naturally
depend on how you hold the ring. If you hold
it normal to the flow, maximum water will flow
through it than if you hold it with some other
orientation. This shows that an area element
should be treated as a vector. It has a

magnitude and also a direction. How to specify the direction of a planar
area? Clearly, the normal to the plane specifies the orientation of the
plane. Thus the direction of a planar area vector is along its normal.

How to associate a vector to the area of a curved surface? We imagine
dividing the surface into a large number of very small area elements.
Each small area element may be treated as planar and a vector associated
with it, as explained before.

Notice one ambiguity here. The direction of an area element is along
its normal. But a normal can point in two directions. Which direction do
we choose as the direction of the vector associated with the area element?
This problem is resolved by some convention appropriate to the given
context. For the case of a closed surface, this convention is very simple.
The vector associated with every area element of a closed surface is taken
to be in the direction of the outward normal. This is the convention used
in Fig. 1.16. Thus, the area element vector DS at a point on a closed

surface equals DS n̂  where DS is the magnitude of the area element and

n̂  is a unit vector in the direction of outward normal at that point.
We now come to the definition of electric flux. Electric flux Df through

an area element DS is defined by

Df = E.DS = E DS  cosq (1.11)

which, as seen before, is proportional to the number of field lines cutting
the area element. The angle q here is the angle between E and DS. For a
closed surface, with the convention stated already, q is the angle between
E and the outward normal   to the area element. Notice we could look at
the expression E DS cosq  in two ways:  E (DS cosq ) i.e., E times the

FIGURE 1.15 Dependence of flux on the
inclination q between E and n̂ .

FIGURE 1.16
Convention for
defining normal

n̂  and DS. * It will not be proper to say that the number of field lines is equal to EDS. The
number of field lines is after all, a matter of how many field lines we choose to
draw. What is physically significant is the relative number of field lines crossing
a given area at different points.
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projection of area normal to E,  or E
^
 DS, i.e., component of E along the

normal to the area element times the magnitude of the area element. The
unit of electric flux is N C–1 m2.

The basic definition of electric flux given by Eq. (1.11) can be used, in
principle, to calculate the total flux through any given surface. All we
have to do is to divide the surface into small area elements, calculate the
flux at each element and add them up. Thus, the total flux f through a
surface S is

f ~ S E.DS (1.12)

The approximation sign is put because the electric field E is taken to
be constant over the small area element. This is mathematically exact
only when you take the limit DS ® 0  and the sum in Eq. (1.12) is written
as an integral.

1.10  ELECTRIC DIPOLE

An electric dipole is a pair of equal and opposite point charges q and –q,

separated by a distance 2a. The line connecting the two charges defines
a direction in space. By convention, the direction from –q to q is said to
be the direction of the dipole. The mid-point of locations of –q and q is
called the centre of the dipole.

The total charge of the electric dipole is obviously zero. This does not
mean that the field of the electric dipole is zero. Since the charge q and
–q are separated by some distance, the electric fields due to them, when
added, do not exactly cancel out. However, at distances much larger than
the separation of the two charges forming a dipole (r >> 2a), the fields
due to q and –q nearly cancel out. The electric field due to a dipole
therefore falls off, at large distance, faster than like 1/r 2 (the dependence
on r of the field due to a single charge q). These qualitative ideas are
borne out by the explicit calculation as follows:

1.10.1  The field of an electric dipole

The electric field of the pair of charges (–q and q) at any point in space
can be found out from Coulomb’s law and the superposition principle.
The results are simple for the following two cases: (i) when the point is on
the dipole axis, and (ii) when it is in the equatorial plane of the dipole,
i.e.,  on a plane perpendicular to the dipole axis through its centre.  The
electric field at any general point P is obtained by adding the electric
fields E

–q
 due to the charge –q and E+q

 due to the charge q, by the
parallelogram law of vectors.

(i) For points on the axis

Let the point P be at distance r from the centre of the dipole on the side of
the charge q,  as shown in Fig. 1.17(a). Then

E p− = −
+q

q

r a4 0
2πε ( )

� [1.13(a)]

where p̂  is the unit vector along the dipole axis (from –q to q). Also

E p+ =
−q

q

r a4 0

2π ε ( )
� [1.13(b)]
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The total field at P is

E E E p= + =
−

−
+









+ −q q

q

r a r a4

1 1

0
2 2π ε ( ) ( )

�

    =
−

q a r

r ao4

4
2 2 2π ε ( )

�p (1.14)

For r >> a

E p=
4

4 0

3

q a

rπε

ˆ                (r >> a) (1.15)

(ii) For points on the equatorial plane

The magnitudes of the electric fields due to the two
charges +q and –q are given by

E
q

r a
q+ =

+4

1

0

2 2πε
[1.16(a)]

E
q

r a
q– =

+4

1

0

2 2πε
[1.16(b)]

and are equal.
The directions of  E+q

 and E–q
 are as shown in

Fig. 1.17(b). Clearly, the components normal to the dipole
axis cancel away. The components along the dipole axis
add up. The total electric field is opposite to p̂ . We have

E = – (E +q
 + E –q

) cosq  p̂

= −
+

2

4
2 2 3 2

q a

r aoπ ε ( )
�

/
p (1.17)

At large distances (r >> a), this reduces to

E p= − >>
2

4
3

q a

r
r a

oπ ε

ˆ ( ) (1.18)

From Eqs. (1.15) and (1.18), it is clear that the dipole field at large
distances does not involve q and a separately; it depends on the product
qa. This suggests the definition of dipole moment. The dipole moment

vector p of an electric dipole is defined by
p  = q × 2a p̂ (1.19)

that is, it is a vector whose magnitude is charge q times the separation
2a (between the pair of charges q, –q) and the direction is along the line
from –q to q. In terms of p, the electric field of a dipole at large distances
takes simple forms:
At a point on the dipole axis

E
p

=
2

4
3πεor

(r >> a) (1.20)

At a point on the equatorial plane

E
p

= −
4

3πεor
(r >> a) (1.21)

FIGURE 1.17 Electric field of a dipole
at (a) a point on the axis, (b) a point
on the equatorial plane of the dipole.

p is the dipole moment vector of
magnitude p = q × 2a  and

directed from –q to q.

2024-252024-25



Electric Charges

and Fields

25

 E
X

A
M

P
L
E 1

.9

 Notice the important point that the dipole field at large distances
falls off not as 1/r2 but as1/r3. Further,  the magnitude and the direction
of the dipole field depends not only on the distance r but also on the
angle between the position vector r and the dipole moment p.

We can think of the limit when the dipole size 2a approaches zero,
the charge q approaches infinity in such a way that the product
p = q × 2a is finite. Such a dipole is referred to as a point dipole. For a
point dipole, Eqs. (1.20) and (1.21) are exact, true for any r.

1.10.2  Physical significance of dipoles

In most molecules, the centres of positive charges and of negative charges*
lie at the same place. Therefore, their dipole moment is zero. CO2 and
CH4 are of this type of molecules. However, they develop a dipole moment
when an electric field is applied. But in some molecules, the centres of
negative charges and of positive charges do not coincide. Therefore they
have a permanent electric dipole moment, even in the absence of an electric
field. Such molecules are called polar molecules. Water molecules, H2O,
is an example of this type. Various materials give rise to interesting
properties and important applications in the presence or  absence of
electric field.

Example 1.9 Two charges ±10 mC are placed 5.0 mm apart. Determine
the electric field at (a) a point P on the axis of the dipole 15 cm away
from its centre O on the side of the positive charge, as shown in Fig.
1.18(a), and (b) a point Q, 15 cm away from O on a line passing through
O and normal to the axis of the dipole, as shown in Fig. 1.18(b).

FIGURE 1.18

* Centre of a collection of positive point charges is defined much the same way

as the centre of mass: r
r

cm
=

∑

∑

q

q

i i
i

i
i

.
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Solution  (a) Field at P due to charge +10 mC

= 

5

12 2 1 2

10 C

4 (8.854 10 C N m )

−

− − −π × 2 4 2

1

(15 0.25) 10 m
−×

− ×

=  4.13 × 106  N C–1  along BP
Field at P due to charge –10 mC

–5

12 2 1 2

10 C

4 (8.854 10 C N m )
− − −=

π ×  2 4 2

1

(15 0.25) 10 m
−×

+ ×

=  3.86 × 106  N C–1 along PA
The resultant electric field at P due to the two charges at A and B is
=  2.7 × 105  N C–1  along BP.
In this example, the ratio OP/OB is quite large (= 60). Thus, we can
expect to get approximately the same result as above by directly using
the formula for electric field at a far-away point on the axis of a dipole.
For a dipole consisting of charges ± q, 2a distance apart, the electric
field at a distance r from the centre on the axis of the dipole has a
magnitude

E
p

r
=

2

4 0

3πε
(r/a >> 1)

where p = 2a q is the magnitude of the dipole moment.
The direction of electric field on the dipole axis is always along the
direction of the dipole moment vector (i.e., from –q to q). Here,
p =10–5 C × 5 × 10–3 m  = 5 × 10–8 C m
Therefore,

E  =
8

12 2 1 2

2 5 10 Cm

4 (8.854 10 C N m )

−

− − −

× ×
π × 3 6 3

1

(15) 10 m
−×

×  = 2.6 × 105  N C–1

along the dipole moment direction AB, which is close to the result
obtained earlier.
(b) Field at Q due to charge + 10 mC at B

=
5

12 2 1 2

10 C

4 (8.854 10 C N m )

−

− − −π × 2 2 4 2

1

[15 (0.25) ] 10 m
−+ ×

×

=  3.99 × 106  N C–1 along BQ

Field at Q due to charge –10 mC at A

=
5

12 2 1 2

10 C

4 (8.854 10 C N m )

−

− − −π × 2 2 4 2

1

[15 (0.25) ] 10 m
−+ ×

×

=  3.99 × 106  N C–1 along QA.

Clearly, the components of these two forces with equal magnitudes
cancel along the direction OQ but add up along the direction parallel
to BA. Therefore, the resultant electric field at Q due to the two
charges at A and B is

= 2 × 
6 –1

2 2

0.25
3.99 10 N C

15 (0.25)
× ×

+
along BA

=  1.33 × 105  N C–1 along BA.
As in (a), we can expect to get approximately the same result by
directly using the formula for dipole field at a point on the normal to
the axis of the dipole:
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E
p

r
=

4
3π 0ε

(r/a >> 1)

8

12 2 –1 –2

5 10 Cm

4 (8.854 10 C N m )

−

−

×
=

π × 3 6 3

1

(15) 10 m
−×

×

=  1.33 × 105  N C–1.
The direction of electric field in this case is opposite to the direction
of the dipole moment vector. Again, the result agrees with that obtained
before.

1.11  DIPOLE IN A UNIFORM EXTERNAL FIELD

Consider a permanent dipole of dipole moment p in a uniform
external field E, as shown in Fig. 1.19. (By permanent dipole, we
mean that p exists  irrespective of E; it has not been induced by E.)

There is a force qE on q and a force –qE on –q. The net force on
the dipole is zero, since E is uniform. However, the charges are
separated, so the forces act at different points, resulting in a torque
on the dipole. When the net force is zero, the torque (couple) is
independent of the origin. Its magnitude equals the magnitude of
each force multiplied by the arm of the couple (perpendicular
distance between the two antiparallel forces).

Magnitude of torque = q E × 2 a sinq

       = 2 q a E sinq

Its direction is normal to the plane of the paper, coming out of it.
The magnitude of p × E is also p E sinq and its direction

is normal to the paper, coming out of it. Thus,

ttttt  = p × E (1.22)

This torque will tend to align the dipole with the field
E. When p is aligned with E, the torque is zero.

What happens if the field is not uniform? In that case,
the net force will evidently be non-zero. In addition there
will, in general, be a torque on the system as before. The
general case is involved, so let us consider the simpler
situations when p is parallel to E or antiparallel to E. In
either case, the net torque is zero, but there is a net force
on the dipole if E is not uniform.

Figure 1.20 is self-explanatory. It is easily seen that
when p is parallel to E, the dipole has a net force in the
direction of increasing field. When p is antiparallel to E,
the net force on the dipole is in the direction of decreasing
field. In general, the force depends on the orientation of p
with respect to E.

This brings us to a common observation in frictional
electricity. A comb run through dry hair attracts pieces of
paper. The comb, as we know, acquires charge through
friction. But the paper is not charged. What then explains
the attractive force? Taking the clue from the preceding

FIGURE 1.19 Dipole in a
uniform electric field.

FIGURE 1.20 Electric force on a
dipole: (a) E parallel to p, (b)  E

antiparallel to p.
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discussion, the charged comb ‘polarises’ the piece of paper, i.e., induces
a net dipole moment in the direction of field. Further, the electric field
due to the comb is not uniform. This non-uniformity of the field makes a
dipole to experience a net force on it. In this situation, it is easily seen
that the paper should move in the direction of the comb!

1.12  CONTINUOUS CHARGE DISTRIBUTION

We have so far dealt with charge configurations involving discrete charges
q1, q2, ..., qn

. One reason why we restricted to discrete charges is that the
mathematical treatment is simpler and does not involve calculus. For
many purposes, however, it is impractical to work in terms of discrete
charges and we need to work with continuous charge distributions. For
example, on the surface of a charged conductor, it is impractical to specify
the charge distribution in terms of the locations of the microscopic charged
constituents. It is more feasible to consider an area element DS (Fig. 1.21)
on the surface of the conductor (which is very small on the macroscopic
scale but big enough to include a very large number of electrons) and
specify the charge DQ on that element. We then define a surface charge

density s at the area element by

Q

S
σ ∆=

∆ (1.23)

We can do this at different points on the conductor and thus arrive at
a continuous function s, called the surface charge density. The surface
charge density s  so defined ignores the quantisation of charge and the
discontinuity in charge distribution at the microscopic level*. s  represents
macroscopic surface charge density, which in a sense, is a smoothed out
average of the microscopic charge density over an area element DS which,
as said before, is large microscopically but small macroscopically. The
units for s are C/m2.

Similar considerations apply for a line charge distribution and a volume
charge distribution. The linear charge density l of a wire is defined by

Q

l
λ ∆=

∆ (1.24)

where Dl is a small line element of wire on the macroscopic scale that,
however, includes a large number of microscopic charged constituents,
and DQ is the charge contained in that line element. The units for l are
C/m. The volume charge density (sometimes simply called charge density)
is defined in a similar manner:

Q

V
ρ ∆=

∆ (1.25)

where DQ is the charge included in the macroscopically small volume
element DV that includes a large number of microscopic charged
constituents. The units for r are C/m3.

The notion of continuous charge distribution is similar to that we
adopt for continuous mass distribution in mechanics. When we refer to

FIGURE 1.21

Definition of linear,
surface and volume

charge densities.
In each case, the

element (Dl, DS, DV )
chosen is small on
the macroscopic

scale but contains
a very large number

of microscopic
constituents.

* At the microscopic level, charge distribution is discontinuous, because they are
discrete charges separated by intervening space where there is no charge.
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the density of a liquid, we are referring to its macroscopic density. We
regard it as a continuous fluid and ignore its discrete molecular
constitution.

The field due to a continuous charge distribution can be obtained in
much the same way as for a system of discrete charges, Eq. (1.10). Suppose
a continuous charge distribution in space has a charge density r. Choose
any convenient origin O and let the position vector of any point in the
charge distribution be r. The charge density r may vary from point to
point, i.e., it is a function of r. Divide the charge distribution into small
volume elements of size DV. The charge in a volume element DV is rDV.

Now, consider any general point P (inside or outside the distribution)
with position vector R (Fig. 1.21). Electric field due to the charge rDV is
given by Coulomb’s law:

2

0

1
ˆ

4
V

'
r'

ρ
ε

∆
∆ =

π
E r (1.26)

where r¢ is the distance between the charge element and P, and  r̂ ¢ is a
unit vector in the direction from the charge element to P. By the
superposition principle, the total electric field due to the charge
distribution is obtained by summing over electric fields due to different
volume elements:

2

0

1
ˆ

4 all V

V
'

r'

ρ
ε ∆

∆
≅ Σ

π
E r (1.27)

Note that r, r¢,  ˆ ′r  all can vary from point to point. In a strict
mathematical method, we should let DV®0 and the sum then becomes
an integral; but we omit that discussion here, for simplicity. In short,
using Coulomb’s law and the superposition principle, electric field can
be determined for any charge distribution, discrete or continuous or part
discrete and part continuous.

1.13  GAUSS’S LAW

As a simple application of the notion of electric flux, let us consider the
total flux through a sphere of radius r, which encloses a point charge q
at its centre. Divide the sphere into small area elements, as shown in
Fig. 1.22.

The flux through an area element DS is

2

0

ˆ
4

q

r
φ

ε
∆ = ∆ = ∆

π
E S r Si i (1.28)

where we have used Coulomb’s law for the electric field due to a single
charge q. The unit vector r̂  is along the radius vector from the centre to
the area element. Now, since the normal to a sphere at every point is
along the radius vector at that point, the area element DS and r̂   have
the same direction. Therefore,

2

04

q
S

r
φ

ε
∆ = ∆

π (1.29)

since the magnitude of a unit vector is 1.
The total flux through the sphere is obtained by adding up flux

through all the different area elements:

FIGURE 1.22 Flux
through a sphere
enclosing a point

charge q at its centre.
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2

04all S

q
S

r
φ

ε∆
= Σ ∆

π
Since each area element of the sphere is at the same

distance r from the charge,

2 2

04 4all S
o

q q
S S

r r
φ

ε ε∆
= Σ ∆ =

π π
Now S, the total area of the sphere, equals 4pr2. Thus,

2

2

00

4
4

q q
r

r
φ

εε
= × π =

π (1.30)

Equation (1.30) is a simple illustration of a general result of
electrostatics called Gauss’s law.

We state Gauss’s law without proof:
Electric flux through a closed surface S

= q/e0 (1.31)

q = total charge enclosed by S.

The law implies that the total electric flux through a closed surface is
zero if no charge is enclosed by the surface. We can see that explicitly in
the simple situation of Fig. 1.23.

Here the electric field is uniform and we are considering a closed
cylindrical surface, with its axis parallel to the uniform field E. The total
flux f  through the surface is  f = f1 + f2 + f3, where f1 and f2 represent
the flux through the surfaces 1 and 2 (of circular cross-section) of the
cylinder and f3 is the flux through the curved cylindrical part of the
closed surface. Now the normal to the surface 3 at every point is
perpendicular to E, so by definition of flux, f3 = 0. Further, the outward
normal to 2 is along E while the outward normal to 1 is opposite to E.
Therefore,

f1 = –E S1,     f2 = +E S2

S1 = S2 = S

where S is the area of circular cross-section. Thus, the total flux is zero,
as expected by Gauss’s law. Thus, whenever you find that the net electric
flux through a closed surface is zero, we conclude that the total charge
contained in the closed surface is zero.

The great significance of Gauss’s law Eq. (1.31), is that it is true in
general, and not only for the simple cases we have considered above. Let
us note some important points regarding this law:
(i) Gauss’s law is true for any closed surface, no matter what its shape

or size.
(ii) The term q on the right side of Gauss’s law, Eq. (1.31), includes the

sum of all charges enclosed by the surface. The charges may be located
anywhere inside the surface.

(iii) In the situation when the surface is so chosen that there are some
charges inside and some outside, the electric field [whose flux appears
on the left side of Eq. (1.31)] is due to all the charges, both inside and
outside S. The term q on the right side of Gauss’s law, however,
represents only the total charge inside S.

FIGURE 1.23 Calculation of the
flux of uniform electric field

through the surface of a cylinder.
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(iv) The surface that we choose for the application of Gauss’s law is called
the Gaussian surface. You may choose any Gaussian surface and
apply Gauss’s law. However, take care not to let the Gaussian surface
pass through any discrete charge. This is because electric field due
to a system of discrete charges is not well defined at the location of
any charge. (As you go close to the charge, the field grows without
any bound.) However, the Gaussian surface can pass through a
continuous charge distribution.

(v) Gauss’s law is often useful towards a much easier calculation of the
electrostatic field when the system has some symmetry. This is
facilitated by the choice of a suitable Gaussian surface.

(vi) Finally, Gauss’s law is based on the inverse square dependence on
distance contained in the Coulomb’s law. Any violation of Gauss’s
law will indicate departure from the inverse square law.

Example 1.10 The electric field components in Fig. 1.24 are
E

x
 = ax1/2, E

y
 = E

z
 = 0, in which a = 800 N/C m1/2. Calculate (a) the

flux through the cube, and (b) the charge within the cube. Assume
that a = 0.1 m.

FIGURE 1.24

Solution
(a) Since the electric field has only an x component, for faces

perpendicular to x direction, the angle between E and DS is
± p/2. Therefore, the flux  f = E.DS is separately zero for each face
of the cube except the two shaded ones. Now the magnitude of
the electric field at the left face is
E

L
 = ax1/2 = aa1/2

(x = a at the left face).
The magnitude of electric field at the right face is
E

R
 = a x1/2 = a (2a)1/2

(x = 2a at the right face).
The corresponding fluxes are

f
L
= E

L
.DS = ˆ

L LS∆ E n⋅ =E
L
 DS cosq = –E

L
 DS, since q = 180°

   = –E
L
a2

f
R
= E

R
.DS = E

R
 DS cosq  = E

R
 DS,   since q = 0°

   = E
R
a2

Net flux through the cube
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= f
R 

+ f
L
 = E

R
a2 – E

L
a2 = a2 (E

R
 – E

L
) = aa2 [(2a)1/2 – a1/2]

=  aa5/2 ( )2 –1

=  800 (0.1)5/2 ( )2 –1

= 1.05 N m2 C–1

(b) We can use Gauss’s law to find the total charge q inside the cube.
We have f = q/e0 or q = fe0. Therefore,

  q = 1.05 × 8.854 × 10–12 C = 9.27 × 10–12 C.

Example 1.11 An electric field is uniform, and in the positive x

direction for positive x, and uniform with the same magnitude but in
the negative x direction for negative x. It is given that E = 200 î   N/C
for x > 0 and E = –200 î  N/C for x < 0. A right circular cylinder of
length 20 cm and radius 5 cm has its centre at the origin and its axis
along the x-axis so that one face is at x = +10 cm and the other is at
x = –10 cm (Fig. 1.25). (a) What is the net outward flux through each
flat face? (b) What is the flux through the side of the cylinder?
(c) What is the net outward flux through the cylinder? (d) What is the
net charge inside the cylinder?

Solution
(a) We can see from the figure that on the left face E and DS are

parallel. Therefore, the outward flux is

f
L
= E.DS = – 200 ˆ ∆i Si

=  + 200 DS, since  ˆ ∆i Si = – DS
=  + 200 × p (0.05)2 = + 1.57 N m2 C–1

On the right face, E and DS are parallel and therefore
f

R 
=  E.DS =  + 1.57 N m2 C–1.

(b) For any point on the side of the cylinder E is perpendicular to
DS and hence E.DS = 0. Therefore, the flux out of the side of the
cylinder is zero.

(c) Net outward flux through the cylinder
f

 
= 1.57 + 1.57 + 0 = 3.14 N m2 C–1

FIGURE 1.25

 (d) The net charge within the cylinder can be found by using Gauss’s
law which gives
q =  e0f

   =  3.14 × 8.854 × 10–12  C
   =  2.78 × 10–11 C
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1.14  APPLICATIONS OF GAUSS’S LAW

The electric field due to a general charge distribution is, as seen above,
given by Eq. (1.27). In practice, except for some special cases, the
summation (or integration) involved in this equation cannot be carried
out to give electric field at every point in
space. For some symmetric charge
configurations, however, it is possible to
obtain the electric field in a simple way using
the Gauss’s law. This is best understood by
some examples.

1.14.1 Field due to an infinitely
long straight uniformly
charged wire

Consider an infinitely long thin straight wire
with uniform linear charge density l. The wire
is obviously an axis of symmetry. Suppose we
take the radial vector from O to P and rotate it
around the wire. The points P, P¢, P¢¢ so
obtained are completely equivalent with
respect to the charged wire. This implies that
the electric field must have the same magnitude
at these points. The direction of electric field at
every point must be radial (outward if l > 0,
inward if l < 0). This is clear from Fig. 1.26.

Consider a pair of line elements P1 and P2
of the wire, as shown. The electric fields
produced by the two elements of the pair when
summed give a resultant electric field which
is radial (the components normal to the radial
vector cancel). This is true for any such pair
and hence the total field at any point P is
radial. Finally, since the wire is infinite,
electric field does not depend on the position
of P along the length of the wire. In short, the
electric field is everywhere radial in the plane
cutting the wire normally, and its magnitude
depends only on the radial distance r.

To calculate the field, imagine a cylindrical
Gaussian surface, as shown in the Fig. 1.26(b).
Since the field is everywhere radial, flux
through the two ends of the cylindrical
Gaussian surface is zero. At the cylindrical
part of the surface, E is normal to the surface
at every point, and its magnitude is constant,
since it depends only on r. The surface area
of the curved part is  2prl, where l is the length
of the cylinder.

FIGURE 1.26 (a) Electric field due to an
infinitely long thin straight wire is radial,
(b) The Gaussian surface for a long thin
wire of uniform linear charge density.
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Flux through the Gaussian surface

= flux through the curved cylindrical part of the surface

= E × 2prl

The surface includes charge equal to l l. Gauss’s law then gives
E × 2prl = ll/e0

i.e.,E  = 
02 r

λ
επ

Vectorially, E at any point is given by

0

ˆ
2 r

λ
ε

=
π

E n (1.32)

where n̂  is the radial unit vector in the plane normal to the wire passing
through the point. E is directed outward if l is positive and inward if l is
negative.

Note that when we write a vector A as a scalar multiplied by a unit
vector, i.e., as A = A â , the scalar A is  an algebraic number. It can be
negative or positive. The direction of A will be the same as that of the unit
vector â if A > 0 and opposite to â  if A < 0. When we want to restrict to
non-negative values, we use the symbol A and call it the modulus of A .
Thus, 0≥A .

Also note that though only  the charge enclosed by the surface (ll )
was included above, the electric field E is due to the charge on the entire
wire. Further, the assumption that the wire is infinitely long is crucial.
Without this assumption, we cannot take E to be normal to the curved
part of the cylindrical Gaussian surface. However, Eq. (1.32) is
approximately true for electric field around the central portions of a long
wire, where the end effects may be ignored.

1.14.2  Field due to a uniformly charged infinite plane sheet

Let s be the uniform surface charge density of an infinite plane sheet
(Fig. 1.27). We take the x-axis normal to the given plane. By symmetry,
the electric field will not depend on y and z coordinates and its direction

at every point must be parallel to the x-direction.
We can take the Gaussian surface to be a

rectangular parallelepiped of cross-sectional area
A, as shown. (A cylindrical surface will also do.) As
seen from the figure, only the two faces 1 and 2 will
contribute to the flux; electric field lines are parallel
to the other faces and they, therefore, do not
contribute to the total flux.

The unit vector normal to surface 1 is in –x

direction while  the unit  vector normal to surface 2
is in the +x direction. Therefore, flux  E.DS through
both the surfaces are equal and add up. Therefore
the net flux through the Gaussian surface is 2 EA.
The charge enclosed by the closed surface is sA.
Therefore by Gauss’s law,

FIGURE 1.27 Gaussian surface for a
uniformly charged infinite plane sheet.
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2 EA = sA/e0
or,  E = s/2e0
Vectorically,

0

ˆ
2
σ
ε

=E n (1.33)

where n̂  is a unit vector normal to the plane and going away from it.
E is directed away from the plate if s  is positive and toward the plate

if s is negative. Note that the above application of the Gauss’ law has
brought out an additional fact: E is independent of x also.

For a finite large planar sheet, Eq. (1.33) is approximately true in the
middle regions of the planar sheet, away from the ends.

1.14.3  Field due to a uniformly charged thin spherical shell

Let s be the uniform surface charge density of a thin spherical shell of
radius R (Fig. 1.28). The situation has obvious spherical symmetry. The
field at any point P, outside or inside, can depend only on r (the radial
distance from the centre of the shell to the point) and must be radial (i.e.,
along the radius vector).

(i) Field outside the shell: Consider a point P outside the
shell with radius vector r. To calculate E at P, we take the
Gaussian surface to be a sphere of radius r and with centre
O, passing through P. All points on this sphere are equivalent
relative to the given charged configuration. (That is what we
mean by spherical symmetry.) The electric field at each point
of the Gaussian surface, therefore, has the same magnitude
E and is along the radius vector at each point. Thus, E and
DS at every point are parallel and the flux through each
element is E DS. Summing over all DS, the flux through the
Gaussian surface is E × 4 p r 2. The charge enclosed is
s × 4 p R 2. By Gauss’s law

E × 4 p r 2 = 
2

0

4 R
σ
ε

π

Or,  
2

2 2

0 0
4

R q
E

r r

σ
ε ε

= =
π

where q  =  4 p R2 s is the total charge on the spherical shell.
Vectorially,

2

0

ˆ
4

q

rε
=

π
E r (1.34)

The electric field is directed outward if q > 0 and inward if
q < 0. This, however, is exactly the field produced by a charge
q placed at the centre O. Thus for points outside the shell, the field due
to a uniformly charged shell is as if  the entire charge of the shell is
concentrated at its centre.

(ii) Field inside the shell: In Fig. 1.28(b), the point P is inside the
shell. The Gaussian surface is again a sphere through P centred at O.

FIGURE 1.28 Gaussian
surfaces for a point with

(a) r > R, (b) r < R.
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The flux through the Gaussian surface, calculated as before, is
E × 4 p r2. However, in this case, the Gaussian surface encloses no
charge. Gauss’s law then gives
E × 4 p r2 =  0
i.e., E = 0          (r < R ) (1.35)

that is, the field due to a uniformly charged thin shell is zero at all points
inside the shell*. This important result is a direct consequence of Gauss’s
law which follows from Coulomb’s law. The experimental verification of
this result confirms the 1/r2 dependence in Coulomb’s law.

Example 1.12 An early model for an atom considered it to have a
positively charged point nucleus of charge Ze, surrounded by a
uniform density of negative charge up to a radius R. The atom as a
whole is neutral. For this model, what is the electric field at a distance
r from the nucleus?

FIGURE 1.29

Solution  The charge distribution for this model of the atom is as
shown in Fig. 1.29. The total negative charge in the uniform spherical
charge distribution of radius R must be –Z e, since the atom (nucleus
of charge Z e + negative charge) is neutral. This immediately gives us
the negative charge density r, since we must have

3
4

0–
3

R
Zeρπ

=

or 3

3

4

Ze

R
ρ = −

π
To find the electric field E(r) at a point P which is a distance r away
from the nucleus, we use Gauss’s law. Because of the spherical
symmetry of the charge distribution, the magnitude of the electric
field E(r) depends only on the radial distance, no matter what the
direction of r. Its direction is along (or opposite to) the radius vector r
from the origin to the point P. The obvious Gaussian surface is a
spherical surface centred at the nucleus. We consider two situations,
namely, r < R and r > R.
(i) r < R : The electric flux f enclosed by the spherical surface is

    f  =  E (r ) × 4 p r2

* Compare this with a uniform mass shell discussed in Section 7.5 of Class XI
Textbook of Physics.
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where E (r )  is the magnitude of the electric field at r. This is because
the field at any point on the spherical Gaussian surface has the
same direction as the normal to the surface there,  and has the same
magnitude at all points on the surface.
The charge q enclosed by the Gaussian surface is the positive nuclear
charge and the negative charge within the sphere of radius r,

i.e., 
3

4

3

r
q Z e ρ

π
= +

Substituting for the charge density r  obtained earlier, we have
3

3

r
q Z e Z e

R
= −

Gauss’s law then gives,

2 3

0

1
( ) ;

4

Z e r
E r r R

r Rε
  = − <    π

The electric field is directed radially outward.
(ii) r > R:  In this case, the total charge enclosed by the Gaussian
spherical surface is zero since the atom is neutral. Thus, from Gauss’s
law,
E (r ) × 4 p  r 2 = 0  or  E (r ) = 0;    r > R
At r = R, both cases give the same result: E = 0.

SUMMARY

1. Electric and magnetic forces determine the properties of atoms,
molecules and bulk matter.

2. From simple experiments on frictional electricity, one can infer that
there are two types of charges in nature; and that like charges repel
and unlike charges attract. By convention, the charge on a glass rod
rubbed with silk is positive; that on a plastic rod rubbed with fur is
then negative.

3. Conductors allow movement of electric charge through them,
insulators do not. In metals, the mobile charges are electrons; in
electrolytes both positive and negative ions are mobile.

4. Electric charge has three basic properties: quantisation, additivity
and conservation.

Quantisation of electric charge means that total charge (q) of a body
is always an integral multiple of a basic quantum of charge (e) i.e.,
q = n e, where n = 0, ±1, ±2, ±3, .... Proton and electron have charges
+e, –e, respectively. For macroscopic charges for which n is a very large
number, quantisation of charge can be ignored.

Additivity of electric charges means that the total charge of a system
is the algebraic sum (i.e., the sum taking into account proper signs)
of all individual charges in the system.

Conservation of electric charges means that the total charge of an
isolated system remains unchanged with time. This means that when
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bodies are charged through friction, there is a transfer of electric charge
from one body to another, but no creation or destruction
of charge.

5. Coulomb’s Law: The mutual electrostatic force between two point
charges q1 and q2 is proportional to the product q1q2 and inversely
proportional to the square of the distance r21 separating them.
Mathematically,

F21 = force on q2 due to  1 2

1 212

21

ˆ
k (q q )

q
r

= r

where 21r̂  is a unit vector in the direction from q1 to q2 and k =  
0

1

4 επ
is the constant of proportionality.

In SI units, the unit of charge is coulomb. The experimental value of
the constant e0 is

e0 = 8.854 × 10–12 C2 N–1 m–2

The approximate value of k is

k = 9 × 109 N m2 C–2

6. The ratio of electric force and gravitational force between a proton
and an electron is

2

39
2 4 10

e p

k e
.

G m m
≅ ×

7. Superposition Principle: The principle is based on the property that the
forces with which two charges attract or repel each other are not
affected by the presence of a third (or more) additional charge(s). For
an assembly of charges q1, q2, q3, ..., the force on any charge, say q1, is
the vector sum of the force on  q1 due to q2, the force on q1 due to q3,
and so on. For each pair, the force is given by the Coulomb’s law for
two charges stated earlier.

8. The electric field E at a point due to a charge configuration is the
force on a small positive test charge q placed at the point divided by
the magnitude of the charge. Electric field due to a point charge q has
a magnitude |q|/4pe0r

2; it is radially outwards from q, if q is positive,
and radially inwards if q is negative. Like Coulomb force, electric field
also satisfies superposition principle.

9. An electric field line is a curve drawn in such a way that the tangent
at each point on the curve gives the direction of electric field at that
point. The relative closeness of field lines indicates the relative strength
of electric field at different points; they crowd near each other in regions
of strong electric field and are far apart where the electric field is
weak. In regions of constant electric field, the field lines are uniformly
spaced parallel straight lines.

10. Some of the important properties of field lines are: (i) Field lines are
continuous curves without any breaks. (ii) Two field lines cannot cross
each other. (iii) Electrostatic field lines start at positive charges and
end at negative charges —they cannot form closed loops.

11. An electric dipole is a pair of equal and opposite charges q and –q

separated by some distance 2a. Its dipole moment vector p has
magnitude 2qa and is in the direction of the dipole axis from –q to q.
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12. Field of an electric dipole in its equatorial plane (i.e., the plane
perpendicular to its axis and passing through its centre) at a distance
r from the centre:

2 2 3/2

1

4 ( )o a rε
−

=
π +
p

E

3
,

4 o

for r a
rε

−≅ >>
π

p

Dipole electric field on the axis at a distance r from the centre:

2 2 2

0

2

4 ( )

r

r aε
=

π −
p

E

3

0

2

4
for r a

rε
≅ >>

π
p

The 1/r3 dependence of dipole electric fields should be noted in contrast
to the 1/r2 dependence of electric field due to a point charge.

13. In a uniform electric field E, a dipole experiences a torque τ  given by

τ  = p × E

but experiences no net force.

14. The flux Df of electric field E through a small area element DS is
given by

 Df  = E.DS

The vector area element DS is

DS = DS n̂

where DS is the magnitude of the area element and n̂  is normal to the
area element, which can be considered planar for sufficiently small DS.

For an area element of a closed surface, n̂  is taken to be the direction
of outward normal, by convention.

15. Gauss’s law: The flux of electric field through any closed surface S is
1/e0 times the total charge enclosed by S. The law is especially useful
in determining electric field E, when the source distribution has simple
symmetry:

(i) Thin infinitely long straight wire of uniform linear charge density l

0

ˆ
2 r

λ
ε

=
π

E n

where r is the perpendicular distance of the point from the wire and

n̂ is the radial unit vector in the plane normal to the wire passing
through the point.

(ii) Infinite thin plane sheet of uniform surface charge density s

0

ˆ
2

σ
ε

=E n

where n̂  is a unit vector normal to the plane, outward on either side.
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(iii) Thin spherical shell of uniform surface charge density s

2

0

ˆ ( )
4

q
r R

rε
= ≥

π
E r

E = 0      (r   <   R )

where r is the distance of the point from the centre of the shell and R
the radius of the shell. q is the total charge of the shell:  q = 4pR2s.

The electric field outside the shell is as though the total charge is
concentrated at the centre. The same result is true for a solid sphere
of uniform volume charge density. The field is zero at all points inside
the shell.

Physical quantity Symbol Dimensions Unit Remarks

Vector area element D S [L2] m2
DS = DS n̂

Electric field E [MLT–3A–1] V m–1

Electric flux f [ML3 T–3A–1] V m Df  =  E.DS

Dipole moment p [LTA] C m Vector directed
from negative to
positive charge

Charge density:

linear l [L–1 TA] C m–1  Charge/length

surface s [L–2 TA] C m–2 Charge/area

volume r [L–3 TA] C m–3 Charge/volume

POINTS TO PONDER

1. You might wonder why the protons, all carrying positive charges,
are compactly residing inside the nucleus. Why do they not fly away?
You will learn that there is a third kind of a fundamental force,
called the strong force which holds them together. The range of
distance where this force is effective is, however, very small ~10-14

m. This is precisely the size of the nucleus. Also the electrons are
not allowed to sit on top of the protons, i.e. inside the nucleus,
due to the laws of quantum mechanics. This gives the atoms their
structure as they exist in nature.

2. Coulomb force and gravitational force follow the same inverse-square
law. But gravitational force has only one sign (always attractive), while
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Coulomb force can be of both signs (attractive and repulsive), allowing
possibility of cancellation of electric forces. This is how gravity, despite
being a much weaker force, can be a dominating and more pervasive
force in nature.

3. The constant of proportionality k in Coulomb’s law is a matter of
choice if the unit of charge is to be defined using Coulomb’s law. In SI
units, however, what is defined is the unit of current (A) via its magnetic
effect (Ampere’s law) and the unit of charge (coulomb) is simply defined
by (1C = 1 A s). In this case, the value of k is no longer arbitrary; it is
approximately 9 × 109 N m2 C–2.

4. The rather large value of k, i.e., the large size of the unit of charge
(1C) from the point of view of electric effects arises because (as
mentioned in point 3 already) the unit of charge is defined in terms of
magnetic forces (forces on  current–carrying wires) which are generally
much weaker than the electric forces. Thus while 1 ampere is a unit
of reasonable size for magnetic effects, 1 C = 1 A s, is too big a unit for
electric effects.

5. The additive property of charge is not an ‘obvious’ property. It is related
to the fact that electric charge has no direction associated with it;
charge is a scalar.

6. Charge is not only a scalar (or invariant) under rotation; it is also
invariant for frames of reference in relative motion. This is not always
true for every scalar. For example, kinetic energy is a scalar under
rotation, but is not invariant for frames of reference in relative
motion.

7. Conservation of total charge of an isolated system is a property
independent of the scalar nature of charge noted in point 6.
Conservation refers to invariance in time in a given frame of reference.
A quantity may be scalar but not conserved (like kinetic energy in an
inelastic collision). On the other hand, one can have conserved vector
quantity (e.g., angular momentum of an isolated system).

8. Quantisation of electric charge is a basic (unexplained) law of nature;
interestingly, there is no analogous law on quantisation of mass.

9. Superposition principle should not be regarded as ‘obvious’, or
equated with the law of addition of vectors. It says two things:
force on one charge due to another charge is unaffected by the
presence of other charges, and there are no additional three-body,
four-body, etc., forces which arise only when there are more than
two charges.

10. The electric field due to a discrete charge configuration is not defined
at the locations of the discrete charges. For continuous volume
charge distribution, it is defined at any point in the distribution.
For a surface charge distribution, electric field is discontinuous
across the surface.

11. The electric field due to a charge configuration with total charge zero
is not zero; but for distances large compared to the size of
the configuration, its field falls off faster than 1/r 2, typical of field
due to a single charge. An electric dipole is the simplest example of
this fact.
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EXERCISES

1.1 What is the force between  two small charged spheres having
charges of 2 × 10–7C and 3 × 10–7C placed 30 cm apart in air?

1.2 The electrostatic force on a small sphere of charge 0.4 mC due to
another small sphere of charge –0.8 mC in air is 0.2 N. (a) What is
the distance between the two spheres? (b) What is the force on the
second sphere due to the first?

1.3 Check that the ratio ke2/G m
e
m

p
 is dimensionless. Look up a Table

of Physical Constants and determine the value of this ratio. What
does the ratio signify?

1.4 (a) Explain the meaning of the statement ‘electric charge of a body
is quantised’.

(b) Why can one ignore quantisation of electric charge when dealing
with macroscopic i.e., large scale charges?

1.5 When a glass rod is rubbed with a silk cloth, charges appear on
both. A similar phenomenon is observed with many other pairs of
bodies. Explain how this observation is consistent with the law of
conservation of charge.

1.6 Four point charges qA = 2 mC, qB = –5 mC, qC = 2 mC, and qD = –5 mC are
located at the corners of a square ABCD of side 10 cm. What is the
force on a charge of 1 mC placed at the centre of the square?

1.7 (a) An electrostatic field line is a continuous curve. That is, a field
line cannot have sudden breaks. Why not?

(b) Explain why two field lines never cross each other at any point?
1.8 Two point charges qA = 3 mC and qB = –3 mC are located 20 cm apart

in vacuum.
(a) What is the electric field at the midpoint O of the line AB joining

the two charges?
(b) If a negative test charge of magnitude 1.5 × 10–9 C is placed at

this point, what is the force experienced by the test charge?
1.9 A system has two charges qA = 2.5 × 10–7 C and qB  =  –2.5 × 10–7 C

located at points A: (0, 0, –15 cm) and B: (0,0, +15 cm), respectively.
What are the total charge and electric dipole moment of the system?

1.10 An electric dipole with dipole moment 4 × 10–9 C m is aligned at 30°
with the direction of a uniform electric field of magnitude 5 × 104 NC–1.
Calculate the magnitude of the torque acting on the dipole.

1.11 A polythene piece rubbed with wool is found to have a negative
charge of 3 × 10–7 C.

(a) Estimate the number of electrons transferred (from which to
which?)

(b) Is there a transfer of mass from wool to polythene?

1.12 (a) Two insulated charged copper spheres A and B have their centres
separated by a distance of 50 cm. What is the mutual force of
electrostatic repulsion if the charge on each is 6.5 × 10–7 C? The
radii of A and B are negligible compared to the distance of
separation.

(b) What is the force of repulsion if each sphere is charged double
the above amount, and the distance between them is halved?

1.13 Figure 1.30 shows tracks of three charged particles in a uniform
electrostatic field. Give the signs of the three charges. Which particle
has the highest charge to mass ratio?
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FIGURE 1.30

1.14 Consider a uniform electric field E = 3 × 103 î N/C. (a)  What is  the
flux of this field through a square of 10 cm on a side whose plane is
parallel to the yz plane? (b) What is the  flux through the same
square if the normal  to its plane makes a 60° angle with the x-axis?

1.15 What is the net flux of the uniform electric field of Exercise 1.14
through a cube of side 20 cm oriented so that its faces are parallel
to the coordinate planes?

1.16 Careful measurement of the electric field at the surface of a black
box indicates that the net outward flux through the surface of the
box is 8.0 × 103 Nm2/C. (a) What is the net charge inside the box?
(b) If the net outward flux through the surface of the box were zero,
could you conclude that there were no charges inside the box? Why
or Why not?

1.17 A point charge +10 mC is a distance 5 cm directly above the centre
of a square of side 10 cm, as shown in Fig. 1.31. What is the
magnitude of the electric flux through the square? (Hint: Think of
the square as one face of a cube with edge 10 cm.)

FIGURE 1.31

1.18 A point charge of 2.0 mC is at the centre of a  cubic Gaussian
surface 9.0 cm on edge. What is the net electric flux through the
surface?

1.19 A point charge causes an electric flux of –1.0 × 103 Nm2/C to pass
through a spherical Gaussian surface of 10.0 cm radius centred on
the charge. (a)  If the radius of the Gaussian surface were doubled,
how much flux would  pass through the surface? (b) What is the
value of the point charge?

1.20 A conducting sphere of radius 10 cm has an unknown charge. If
the electric field 20 cm from the centre of the sphere is 1.5 × 103 N/C
and points radially inward, what is the net charge on the sphere?
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1.21 A uniformly charged conducting sphere of 2.4 m diameter has a
surface charge density of 80.0 mC/m2. (a) Find the charge on the
sphere. (b) What is the total electric flux leaving the surface of the
sphere?

1.22 An infinite line charge produces a field of 9 × 104 N/C at a distance
of 2 cm. Calculate the linear charge density.

1.23 Two large, thin metal plates are parallel and close to each other. On
their inner faces, the plates have surface charge densities of opposite
signs and of magnitude 17.0 × 10–22 C/m2. What is E: (a) in the outer
region of the first plate, (b) in the outer region of the second plate,
and (c) between the plates?
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In Chapters 5 and 7 (Class XI), the notion of potential energy was

introduced. When an external force does work in taking a body from a

point to another against a force like spring force or gravitational force,

that work gets stored as potential energy of the body. When the external

force is removed, the body moves, gaining kinetic energy and losing

an equal amount of potential energy. The sum of kinetic and

potential energies is thus conserved. Forces of this kind are called

conservative forces. Spring force and gravitational force are examples of

conservative forces.

Coulomb force between two (stationary) charges is also a conservative

force. This is not surprising, since both have inverse-square dependence

on distance and differ mainly in the proportionality constants – the

masses in the gravitational law are replaced by charges in Coulomb’s

law. Thus, like the potential energy of a mass in a gravitational

field, we can define electrostatic potential energy of a charge in an

electrostatic field.

Consider an electrostatic field E E E E E due to some charge configuration.

First, for simplicity, consider the field EEEEE due to a charge Q placed at the

origin. Now, imagine that we bring a test charge q from a point R to a

point P against the repulsive force on it due to the charge Q. With reference

Chapter Two

ELECTROSTATIC

POTENTIAL AND

CAPACITANCE
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to Fig. 2.1, this will happen if Q and q are both positive

or both negative. For definiteness, let us take Q, q > 0.

Two remarks may be made here. First, we assume
that the test charge q is so small that it does not disturb

the original configuration, namely the charge Q at the

origin (or else, we keep Q fixed at the origin by some
unspecified force). Second, in bringing the charge q from

R to P, we apply an external force F
ext

 just enough to

counter the repulsive electric force F
E 

(i.e, F
ext

= –F
E
).

This means there is no net force on or acceleration of

the charge q when it is brought from R to P, i.e., it is

brought with infinitesimally slow constant speed. In
this situation, work done by the external force is the negative of the work

done by the electric force, and gets fully stored in the form of potential

energy of the charge q. If the external force is removed on reaching P, the
electric force will take the charge away from Q – the stored energy (potential

energy) at P is used to provide kinetic energy to the charge q in such a

way that the sum of the kinetic and potential energies is conserved.
Thus, work done by external forces in moving a charge q from R to P is

W
RP

 =   

        =    –  (2.1)

This work done is against electrostatic repulsive force and gets stored

as potential energy.

At every point in electric field, a particle with charge q possesses a
certain electrostatic potential energy, this work done increases its potential

energy by an amount equal to potential energy difference between points

R and P.
Thus, potential energy difference

P R RPU U U W∆ = − = (2.2)

(Note here that this displacement is in an opposite sense to the electric

force and hence work done by electric field is negative, i.e., –W
RP

.)

Therefore, we can define electric potential energy difference between
two points as the work required to be done by an external force in moving

(without accelerating) charge q from one point to another for electric field

of any arbitrary charge configuration.
Two important comments may be made at this stage:

(i) The right side of Eq. (2.2) depends only on the initial and final positions
of the charge. It means that the work done by an electrostatic field in
moving a charge from one point to another depends only on the initial
and the final points and is independent of the path taken to go from
one point to the other. This is the fundamental characteristic of a
conservative force. The concept of the potential energy would not be
meaningful if the work depended on the path. The path-independence
of work done by an electrostatic field can be proved using the
Coulomb’s law. We omit this proof here.

FIGURE 2.1 A test charge q (> 0) is
moved from the point R to the

point P against the repulsive

force on it by the charge Q (> 0)
placed at the origin.
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(ii) Equation (2.2) defines potential energy difference in terms

of the physically meaningful quantity work. Clearly,

potential energy so defined is undetermined to within an
additive constant.What this means is that the actual value

of potential energy is not physically significant; it is only

the difference of potential energy that is significant. We can
always add an arbitrary constant a to potential energy at

every point, since this will not change the potential energy

difference:

( ) ( )P R P RU U U Uα α+ − + = −

Put it differently, there is a freedom in choosing the point

where potential energy is zero. A convenient choice is to have

electrostatic potential energy zero at infinity. With this choice,
if we take the point R at infinity, we get from Eq. (2.2)

P P PW U U U∞ ∞= − = (2.3)

Since the point P is arbitrary, Eq. (2.3) provides us with a

definition of potential energy of a charge q at any point.

Potential energy of charge q at a point (in the presence of field
due to any charge configuration) is the work done by the

external force (equal and opposite to the electric force) in

bringing the charge q from infinity to that point.

2.2  ELECTROSTATIC POTENTIAL

Consider any general static charge configuration. We define

potential energy of a test charge q in terms of the work done

on the charge q. This work is obviously proportional to q, since

the force at any point is qE, where E is the electric field at that

point due to the given charge configuration. It is, therefore,

convenient to divide the work by the amount of charge q, so

that the resulting quantity is independent of q. In other words,

work done per unit test charge is characteristic of the electric

field associated with the charge configuration. This leads to

the idea of electrostatic potential V due to a given charge

configuration. From Eq. (2.1), we get:

Work done by external force in bringing a unit positive

charge from point R to P

= V
P 
– V

R
  = −





U U

q
P R (2.4)

where V
P 
and V

R
  are the electrostatic potentials at P and R, respectively.

Note, as before, that it is not the actual value of potential but the potential

difference that is physically significant. If, as before, we choose the

potential to be zero at infinity, Eq. (2.4) implies:

Work done by an external force in bringing a unit positive charge

from infinity to a point = electrostatic potential (V ) at that point.
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Count Alessandro Volta

(1745 – 1827) Italian

physicist, professor at

Pavia. Volta established

that the animal electri-

city observed by Luigi

Galvani, 1737–1798, in

experiments with frog

muscle tissue placed in

contact with dissimilar

metals, was not due to

any exceptional property

of animal tissues but

was also generated

whenever any wet body

was sandwiched between

dissimilar metals. This

led him to develop the

first voltaic pile, or

battery, consisting of a

large stack of moist disks

of cardboard (electro-

lyte) sandwiched

between disks of metal

(electrodes).
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In other words, the electrostatic potential (V )

at any point in a region with electrostatic field is

the work done in bringing a unit positive

charge (without acceleration) from infinity to

that point.

The qualifying remarks made earlier regarding

potential energy also apply to the definition of

potential. To obtain the work done per unit test

charge, we should take an infinitesimal test charge

dq, obtain the work done dW in bringing it from

infinity to the point and determine the ratio

dW/dq. Also, the external force at every point of the

path is to be equal and opposite to the electrostatic

force on the test charge at that point.

2.3  POTENTIAL DUE TO A POINT CHARGE

Consider a point charge Q at the origin (Fig. 2.3). For definiteness, take Q

to be positive. We wish to determine the potential at any point P with

position vector r from the origin. For that we must

calculate the work done in bringing a unit positive

test charge from infinity to the point P. For Q > 0,

the work done against the repulsive force on the

test charge is positive. Since work done is

independent of the path, we choose a convenient

path – along the radial direction from infinity to

the point P.

At some intermediate point P¢ on the path, the
electrostatic force on a unit positive charge is

2
0

1
ˆ

4 '

Q

rε
× ′

π
r (2.5)

where ˆ ′r is the unit vector along OP¢. Work done

against this force from  r¢ to r¢ + Dr¢ is

2
04 '

Q
W r

rε
∆ = − ∆ ′

π (2.6)

The negative sign appears because for Dr ¢ < 0, DW is positive. Total

work done (W) by the external force is obtained by integrating Eq. (2.6)

from r¢ = ¥ to r¢ = r,

W
Q

r
dr

Q

r

Q

r

r r

= −
′

′ =
′

=
∞ ∞
∫ 4 4 40

2
0 0π π πε ε ε

(2.7)

This, by definition is the potential at P due to the charge Q

0

( )
4

Q
V r

rε
=

π (2.8)

FIGURE 2.2 Work done on a test charge q

by the electrostatic field due to any given
charge configuration is independent

of the path, and depends only on

its initial and final positions.

FIGURE 2.3 Work done in bringing a unit
positive test charge from infinity to the

point P, against the repulsive force of

charge Q (Q > 0), is the potential at P due to
the charge Q.
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Equation (2.8) is true for any

sign of the charge Q, though we

considered Q > 0 in its derivation.
For Q < 0, V < 0, i.e., work done (by

the external force) per unit positive

test charge in bringing it from
infinity to the point is negative. This

is equivalent to saying that work

done by the electrostatic force in
bringing the unit positive charge

form infinity to the point P is

positive. [This is as it should be,
since for Q < 0, the force on a unit

positive test charge is attractive, so

that the electrostatic force and the
displacement (from infinity to P) are

in the same direction.] Finally, we

note that Eq. (2.8) is consistent with
the choice that potential at infinity

be zero.

Figure (2.4) shows how the electrostatic potential (  1/r ) and the
electrostatic field (  1/r 2 ) varies with r.

Example 2.1
(a) Calculate the potential at a point P due to a charge of 4 × 10–7C

located 9 cm away.

(b) Hence obtain the work done in bringing a charge of 2 × 10–9 C

from infinity to the point P. Does the answer depend on the path
along which the charge is brought?

Solution

(a)  

          = 4 × 104 V

(b) W = qV = 2 × 10–9C × 4 × 104V

     = 8 × 10–5 J

No, work done will be path independent. Any arbitrary infinitesimal
path can be resolved into two perpendicular displacements: One along

r and another perpendicular to r. The work done corresponding to

the later will be zero.

2.4  POTENTIAL DUE TO AN ELECTRIC DIPOLE

As we learnt in the last chapter, an electric dipole consists of two charges

q and  –q separated by a (small) distance 2a. Its total charge is zero. It is
characterised by a dipole moment vector p whose magnitude is q × 2a

and which points in the direction from –q to q (Fig. 2.5). We also saw that

the electric field of a dipole at a point with position vector r depends not
just on the magnitude r, but also on the angle between r and p. Further,

FIGURE 2.4 Variation of potential V with r [in units of
(Q/4pe

0
) m-1] (blue curve) and field with r [in units

of (Q/4pe
0
) m-2] (black curve) for a point charge Q.
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the field falls off, at large distance, not as

1/r 2 (typical of field due to a single charge)

but as 1/r3. We, now, determine the electric
potential due to a dipole and contrast it

with the potential due to a single charge.

As before, we take the origin at the
centre of the dipole. Now we know that the

electric field obeys the superposition

principle. Since potential is related to the
work done by the field, electrostatic

potential also follows the superposition

principle. Thus, the potential due to the
dipole is the sum of potentials due to the

charges q and –q

V
q

r

q

r
= −







1

4 0 1 2πε
(2.9)

where r
1
 and r

2
 are the distances of the

point P from q and –q, respectively.
Now, by geometry,

2 2 2
1 2r r a ar= + − cosq

2 2 2
2 2r r a ar= + +  cosq (2.10)

We take r much greater than a ( ar  ) and retain terms only upto

the first order in a/r

  r r
a

r

a

r
1
2 2

2

2

1
2= − +







cosθ

  ≅ −



r

a

r
2 1

2 cosθ
(2.11)

 Similarly,

  r r
a

r
2
2 2 1

2≅ +





cosθ
(2.12)

Using the Binomial theorem and retaining terms upto the first order

in a/r ; we obtain,

1 1
1

2 1
1

1

1 2

r r

a

r r

a

r
≅ −



 ≅ +





−
cos

cos

/
θ

θ [2.13(a)]

1 1
1

2 1
1

2

1 2

r r

a

r r

a

r
≅ +



 ≅ −





−
cos

cos

/
θ

θ [2.13(b)]

 Using Eqs. (2.9) and (2.13) and p = 2qa, we get

V
q a

r

p

r
= =

4 40
2

0
2π πε

θ θ

ε

2 cos cos
(2.14)

Now, p cos q = p.r̂

FIGURE 2.5 Quantities involved in the calculation

of potential due to a dipole.
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where r̂  is the unit vector along the position vector OP.

The electric potential of a dipole is then given by

V
r

=
1

4 0
2πε

p.r̂
;       (r >> a)  (2.15)

Equation (2.15) is, as indicated, approximately true only for distances

large compared to the size of the dipole, so that higher order terms in
a/r are negligible. For a point dipole p at the origin, Eq. (2.15) is, however,
exact.

From Eq. (2.15), potential on the dipole axis (q = 0, p ) is given by

2
0

1

4

p
V

rε
= ±

π (2.16)

(Positive sign for q = 0, negative sign for q = p.) The potential in the

equatorial plane (q = p/2) is zero.

The important contrasting features of electric potential of a dipole

from that due to a single charge are clear from Eqs. (2.8) and (2.15):

(i) The potential due to a dipole depends not just on r but also on the

angle between the position vector  r and the dipole moment vector p.

(It is, however, axially symmetric about p. That is, if you rotate the

position vector r  about  p, keeping q fixed, the points corresponding

to P on the cone so generated will have the same potential as at P.)

(ii) The electric dipole potential falls off, at large distance, as 1/r
2, not as

1/r, characteristic of the potential due to a single charge. (You can

refer to the Fig. 2.5 for graphs of 1/r
2 versus r and 1/r versus r,

drawn there in another context.)

2.5  POTENTIAL DUE TO A SYSTEM OF CHARGES

Consider a system of charges q
1
, q

2
,…, q

n
 with position vectors r

1
, r

2
,…,

r
n 
relative to some origin (Fig. 2.6). The potential V

1 
at P due to the charge

q
1
 is

1
1

0 1P

1

4

q
V

rε
=

π
where r

1P
 is the distance between q

1
 and P.

Similarly, the potential V
2 
at P due to q

2
 and

V
3
 due to q

3
 are given by

2
2

0 2P

1

4

q
V

rε
=

π , 
3

3

0 3P

1

4

q
V

rε
=

π

where r
2P

 and r
3P

 are the distances of P from
charges q

2
 and q

3
, respectively; and so on for the

potential due to other charges. By the

superposition principle, the potential V at P due
to the total charge configuration is the algebraic
sum of the potentials due to the individual

charges
V = V

1 
+ V

2 
+ ... + V

n
(2.17)

FIGURE 2.6 Potential at a point due to a

system of charges is the sum of potentials
due to individual charges.
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1

4 0

1

1

2

2πε

q

r

q

r

q

r
n

nP P P

...... (2.18)

If we have a continuous charge distribution characterised by a charge

density r (r), we divide it, as before, into small volume elements each of

size Dv and carrying a charge rDv. We then determine the potential due

to each volume element and sum (strictly speaking , integrate) over all

such contributions, and thus determine the potential due to the entire
distribution.

We have seen in Chapter 1 that for a uniformly charged spherical shell,

the electric field outside the shell is as if the entire charge is concentrated
at the centre. Thus, the potential outside the shell is given by

0

1

4

q
V

rε
=

π    ( )r R≥ [2.19(a)]

where q is the total charge on the shell and R its radius. The electric field

inside the shell is zero. This implies (Section 2.6) that potential is constant
inside the shell (as no work is done in moving a charge inside the shell),

and, therefore, equals its value at the surface, which is

0

1

4

q
V

Rε
=

π [2.19(b)]

Example 2.2 Two charges 3 × 10–8 C and –2 × 10–8 C are located
15 cm apart. At what point on the line joining the two charges is the

electric potential zero? Take the potential at infinity to be zero.

Solution Let us take the origin O at the location of the positive charge.
The line joining the two charges is taken to be the x-axis;  the negative

charge is taken to be on the right side of the origin (Fig. 2.7).

FIGURE 2.7

Let P be the required point on the x-axis where the potential is zero.

If x is the x-coordinate of P, obviously x must be positive. (There is no

possibility of potentials due to the two charges adding up to zero for
x < 0.) If x lies between O and A, we have

1

4

3 10

10

2 10

15 10
0

0

8

2

8

2πε

×
×

−
×

− ×
=











–

–

–

–( )x x

where x is in cm. That is,

3 2
0

15x x
− =

−
which gives x  =  9 cm.

If x lies on the extended line OA, the required condition is

3 2
0

15x x
− =

−
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which gives

x  = 45 cm

Thus, electric potential is zero at 9 cm and 45 cm away from the
positive charge on the side of the negative charge. Note that the

formula for potential used in the calculation required choosing

potential to be zero at infinity.

Example 2.3  Figures 2.8 (a) and (b) show the field lines of a positive

and negative point charge respectively.

FIGURE 2.8

(a) Give the signs of the potential difference V
P 

– V
Q
; V

B
 – V

A
.

(b) Give the sign of the potential energy difference of a small negative

charge between the points Q and P; A and B.

(c) Give the sign of the work done by the field in moving a small

positive charge from Q to P.

(d) Give the sign of the work done by the external agency in moving

a small negative charge from B to A.

(e) Does the kinetic energy of a small negative charge increase or

decrease in going from B to A?

Solution

(a) As 
1

V
r

∝ , V
P
 > V

Q
. Thus, (V

P 
– V

Q
) is positive. Also V

B
 is less negative

than V
A
 .  Thus, V

B
 > V

A
 or (V

B 
– V

A
) is positive.

(b) A small negative charge will be attracted towards positive charge.

The negative charge moves from higher potential energy to lower
potential energy. Therefore the sign of potential energy difference

of a small negative charge between Q and P is positive.

Similarly, (P.E.)
A
 > (P.E.)

B
 and hence

 
sign of potential energy

differences is positive.

(c) In moving a small positive charge from Q to P, work has to be

done by an external agency against the electric field. Therefore,

work done by the field is negative.

(d) In moving a small negative charge from B to A work has to be

done by the external agency. It is positive.

(e) Due to force of repulsion on the negative charge, velocity decreases

and hence the kinetic energy decreases in going from B to A.
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FIGURE 2.10 Equipotential surfaces for a uniform electric field.

2.6  EQUIPOTENTIAL SURFACES

An equipotential surface is a surface with a constant value of potential
at all points on the surface. For a single charge q, the potential is given

by Eq. (2.8):

1

4 o

q
V

rε
=

π
This shows that V is a constant if r is constant. Thus, equipotential

surfaces of a single point charge are concentric spherical surfaces centred
at the charge.

Now the electric field lines for a single charge q are radial lines starting
from or ending at the charge, depending on whether q is positive or negative.
Clearly, the electric field at every point is normal to the equipotential surface
passing through that point. This is true in general: for any charge
configuration, equipotential surface through a point is normal to the
electric field at that point. The proof of this statement is simple.

If the field were not normal to the equipotential surface, it would
have non-zero component along the surface. To move a unit test charge
against the direction of the component of the field, work would have to
be done. But this is in contradiction to the definition of an equipotential
surface: there is no potential difference between any two points on the
surface and no work is required to move a test charge on the surface.
The electric field must, therefore, be normal to the equipotential surface
at every point. Equipotential surfaces offer an alternative visual picture
in addition to the picture of electric field lines around a charge
configuration.

FIGURE 2.9 For a
single charge q

(a) equipotential

surfaces are
spherical surfaces

centred at the

charge, and
(b) electric field
lines are radial,

starting from the
charge if q > 0.

For a uniform electric field E, say, along the x-axis, the equipotential
surfaces are planes normal to the x-axis, i.e., planes parallel to the y-z
plane (Fig. 2.10). Equipotential surfaces for (a) a dipole and (b) two

identical positive charges  are shown in Fig. 2.11.

FIGURE 2.11 Some equipotential surfaces for (a) a dipole,

(b) two identical positive charges.
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2.6.1  Relation between field and potential

Consider two closely spaced equipotential surfaces A and B (Fig. 2.12)

with potential values V and V + d V, where d V is the change in V in the

direction of the electric field E. Let P be a point on the
surface B. d l is the perpendicular distance of the

surface A from P. Imagine that a unit positive charge

is moved along this perpendicular from the surface B
to surface A against the electric field. The work done

in this process is |E|d l.

This work equals the potential difference
V

A
–V

B
.

Thus,

|E|d l = V – (V + dV )= – dV

i.e., |E|= − δ

δ

V

l
(2.20)

Since dV is negative, dV = – |dV|. we can rewrite
Eq (2.20) as

E = − = +δ

δ

δ

δ

V

l

V

l
(2.21)

We thus arrive at two important conclusions concerning the relation

between electric field and potential:
(i) Electric field is in the direction in which the potential decreases

steepest.

(ii) Its magnitude is given by the change in the magnitude of potential
per unit displacement normal to the equipotential surface at the point.

2.7  POTENTIAL ENERGY OF A SYSTEM OF CHARGES

Consider first the simple case of two charges q
1
and q

2
 with position vector

r
1
 and r

2
 relative to some origin. Let us calculate the work done

(externally) in building up this configuration. This means that we consider

the charges q
1
 and q

2
 initially at infinity and determine the work done by

an external agency to bring the charges to the given locations. Suppose,

first the charge q
1
 is brought from infinity to the point r

1
. There is no

external field against which work needs to be done, so work done in
bringing q

1
 from infinity to r

1
 is zero. This charge produces a potential in

space given by

V
q

r
1

0

1

1

1

4
=

πε P

where r
1P

 is the distance of a point P in space from the location of q
1
.

From the definition of potential, work done in bringing charge q
2
 from

infinity to the point r
2
 is q

2 
times the potential at r

2
 due to q

1
:

work done on q
2 
= 

1

4 0

1 2

12πε

q q

r

FIGURE 2.12 From the

potential to the field.
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where r
12

 is the distance between points 1 and 2.
Since electrostatic force is conservative, this work gets

stored in the form of potential energy of the system. Thus,
the potential energy of a system of two charges q

1 
and q

2
 is

U
q q

r
=

1

4 0

1 2

12πε
(2.22)

Obviously, if q
2
 was brought first to its present location and

q
1
 brought later, the potential energy U would be the same.

More generally, the potential energy expression,
Eq. (2.22), is unaltered whatever way the charges are brought to the specified
locations, because of path-independence of work for electrostatic force.

Equation (2.22) is true for any sign of  q
1
and q

2
. If q

1
q

2 
> 0, potential

energy is positive. This is as expected, since for like charges (q
1
q

2 
> 0),

electrostatic force is repulsive and a positive amount of work is needed to

be done against this force to bring the charges from infinity to a finite
distance apart. For unlike charges (q

1 
q

2 
< 0), the electrostatic force is

attractive. In that case, a positive amount of work is needed against this

force to take the charges from the given location to infinity. In other words,
a negative amount of work is needed for the reverse path (from infinity to
the present locations), so the potential energy is negative.

Equation (2.22) is easily generalised for a system of any number of
point charges. Let us calculate the potential energy of a system of three
charges q

1
,
 
q

2 
and q

3
 located at r

1
,
 
r

2
, r

3
, respectively. To bring q

1
 first

from infinity to r
1
, no work is required. Next we bring q

2 
from infinity to

r
2
. As before, work done in this step is

1 2
2 1 2

0 12

1
( )

4

q q
q V

rε
=

π
r (2.23)

The charges q
1
 and q

2 
produce a potential, which at any point P is

given by

V
q

r

q

r
1 2

0

1

1

2

2

1

4
, = +





πε P P

(2.24)

Work done next in bringing q
3 
from infinity to the point r

3 
is  q

3 
times

V
1, 2 

at r
3

q V
q q

r

q q

r
3 1 2 3

0

1 3

13

2 3

23

1

4
, ( )r = +





πε

(2.25)

The total work done in assembling the charges
at the given locations is obtained by adding the work

done in different steps [Eq. (2.23) and Eq. (2.25)],

U
q q

r

q q

r

q q

r
= + +







1

4 0

1 2

12

1 3

13

2 3

23πε
(2.26)

Again, because of the conservative nature of the
electrostatic force (or equivalently, the path
independence of work done), the final expression for

U, Eq. (2.26), is independent of the manner in which
the configuration is assembled. The potential energy

FIGURE 2.13 Potential energy of a

system of charges q
1
 and q

2
 is

directly proportional to the product
of charges and inversely to the

distance between them.

FIGURE 2.14 Potential energy of a

system of three charges is given by
Eq. (2.26), with the notation given

in the figure.
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is characteristic of the present state of configuration, and not the way

the state is achieved.

Example 2.4 Four charges are arranged at the corners of a square
ABCD of side d, as shown in Fig. 2.15.(a) Find the work required to

put together this arrangement. (b) A charge q
0
 is brought to the centre

E of the square, the four charges being held fixed at its corners. How
much extra work is needed to do this?

FIGURE 2.15

Solution
(a) Since the work done depends on the final arrangement of the

charges, and not on how they are put together, we calculate work
needed for one way of putting the charges at A, B, C and D. Suppose,

first the charge +q is brought to A, and then the charges –q, +q, and

–q are brought to B, C and D, respectively. The total work needed can
be calculated in steps:

(i) Work needed to bring charge +q to A when no charge is present

elsewhere: this is zero.
(ii) Work needed to bring –q to B when +q is at A. This is given by

(charge at B) × (electrostatic potential at B due to charge +q at A)

= − ×






= −q
q

d

q

d4 40

2

0π πε ε

(iii) Work needed to bring charge +q to C when +q is at A and –q is at
B. This is given by (charge at C) × (potential at C due to charges

at A and B)

= +
+

+
−





q

q

d

q

d4 2 4
0 0π πε ε

      =
−

−





q

d

2

04
1

1

2πε

(iv) Work needed to bring –q to D when +q at A,–q at B, and +q at C.
This is given by (charge at D) × (potential at D due to charges at A,

B and C)

      = −
+

+
−

+






q

q

d

q

d

q

d4 4 2 40 0 0π π πε ε ε

=
−

−





q

d

2

04
2

1

2πε
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Add the work done in steps (i), (ii), (iii) and (iv). The total work

required is

= − + + −





+ −













q

d

2

04
0 1 1

1

2
2

1

2πε
( ) ( )

 =
−

−( )q

d

2

04
4 2

πε

The work done depends only on the arrangement of the charges, and

not how they are assembled. By definition, this is the total

electrostatic energy of the charges.
(Students may try calculating same work/energy by taking charges

in any other order they desire and convince themselves that the energy

will remain the same.)
(b) The extra work necessary to bring a charge q

0
 to the point E when

the four charges are at A, B, C and D is q
0
 × (electrostatic potential at

E due to the charges at A, B, C and D). The electrostatic potential at
E is clearly zero since potential due to A and C is cancelled by that

due to B and D. Hence, no work is required to bring any charge to

point E.

2.8  POTENTIAL ENERGY IN AN EXTERNAL FIELD

2.8.1  Potential energy of a single charge

In Section 2.7, the source of the electric field was specified – the charges

and their locations - and the potential energy of the system of those charges
was  determined. In this section, we ask a related but a distinct question.

What is the potential energy of a charge q in a given field? This question

was, in fact, the starting point that led us to the notion of the electrostatic
potential (Sections 2.1 and 2.2). But here we address this question again

to clarify in what way it is different from the discussion in Section 2.7.

The main difference is that we are now concerned with the potential

energy of a charge (or charges) in an external field. The external field E is

not produced by the given charge(s) whose potential energy we wish to

calculate. E is produced by sources external to the given charge(s).The

external sources may be known, but often they are unknown or

unspecified; what is specified is the electric field E or the electrostatic

potential V due to the external sources. We assume that the charge q

does not significantly affect the sources producing the external field. This

is true if q is very small, or the external sources are held fixed by other

unspecified forces. Even if q is finite, its influence on the external sources

may still be ignored in the situation when very strong sources far away

at infinity produce a finite field E in the region of interest. Note again that

we are interested in determining the potential energy of a given charge q

(and later, a system of charges) in the external field; we are not interested

in the potential energy of the sources producing the external electric field.

The external electric field E and the corresponding external potential

V may vary from point to point. By definition, V at a point P is the work

done in bringing a unit positive charge from infinity to the point P.
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(We continue to take potential at infinity to be zero.) Thus, work done in

bringing a charge q from infinity to the point P in the external field is qV.

This work is stored in the form of potential energy of q. If the point P has
position vector r relative to some origin, we can write:

Potential energy of q at r in an external field

= qV (r) (2.27)

where V(r) is the external potential at the point r.
Thus, if an electron with charge q = e = 1.6×10–19 C is accelerated by

a potential difference of DV = 1 volt, it would gain energy of qDV = 1.6 ×
10–19J. This unit of energy is defined as 1 electron volt or 1eV, i.e.,

1 eV=1.6 × 10–19J. The units based on eV are most commonly used in

atomic, nuclear and particle physics, (1 keV = 103eV = 1.6 × 10–16J, 1 MeV
= 106eV = 1.6 × 10–13J, 1 GeV = 109eV = 1.6 × 10–10J and 1 TeV = 1012eV

= 1.6 × 10–7J). [This has already been defined on Page 117, XI Physics

Part I, Table 6.1.]

2.8.2 Potential energy of a system of two charges in an
external field

Next, we ask: what is the potential energy of a system of two charges q
1

and q
2 
located at r

1
and r

2
, respectively, in an external field? First, we

calculate the work done in bringing the charge q
1
 from infinity to r

1
.

Work done in this step is q
1
 V(r

1
), using Eq. (2.27). Next, we consider the

work done in bringing q
2 
to r

2
. In this step, work is done not only against

the external field E but also against the field due to q
1
.

Work done on q
2
 against the external field

= q
2 

V (r
2
)

Work done on q
2 
against the field due to q

1

1 2

124 o

q q

rε
=

π
where  r

12 
is the distance between q

1 
and q

2
. We have made use of Eqs.

(2.27) and (2.22). By the superposition principle for fields, we add up

the work done on q
2 
against the two fields (E and that due to q

1
):

Work done in bringing q
2 
to r

2

1 2
2 2

12

( )
4 o

q q
q V

rε
= +

π
r (2.28)

Thus,
 Potential energy of the system

= the total work done in assembling the configuration

1 2
1 1 2 2

0 12

( ) ( )
4

q q
q V q V

rε
= + +

π
r r  (2.29)

Example 2.5
(a) Determine the electrostatic potential energy of a system consisting

of  two charges 7 mC and –2 mC (and with no external field) placed

at (–9 cm, 0, 0) and (9 cm, 0, 0) respectively.
(b) How much work is required to separate the two charges infinitely

away from each other?
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(c) Suppose that the same system of charges is now placed in an

external electric field E = A (1/r 2); A = 9 × 105 NC–1 m2. What would

the electrostatic energy of the configuration be?

Solution

(a)
12

91 2

0

1 7 ( 2) 10
9 10

4 0.18

q q
U

rε

−× − ×
= = × ×

π
= –0.7 J.

(b) W = U
2
 – U

1 
 = 0 – U = 0 – (–0.7) = 0.7 J.

(c) The mutual interaction energy of the two charges remains
unchanged. In addition, there is the energy of interaction of the

two charges with the external electric field. We find,

( ) ( )1 1 2 2

7 C 2 C

0.09m 0.09m
q V q V A A

µ − µ
+ = +r r

and the net electrostatic energy is

( ) ( ) 1 2
1 1 2 2

0 12

7 C 2 C
0.7 J

4 0.09m 0.09m

q q
q V q V A A

rε
µ − µ

+ + = + −
π

r r

         70 20 0.7 49.3 J= − − =

2.8.3  Potential energy of a dipole in an external field

Consider a dipole with charges q
1
 = +q and q

2
 = –q placed in a uniform

electric field E, as shown in Fig. 2.16.

As seen in the last chapter, in a uniform electric field,
the dipole experiences no net force; but experiences a

torque t t t t t given by

t = t = t = t = t = p × E (2.30)
which will tend to rotate it (unless p is parallel or

antiparallel to E). Suppose an external torque tttttext 
is

applied in such a manner that it just neutralises this
torque and rotates it in the plane of paper from angle q

0

to angle q
1
 at an infinitesimal angular speed and without

angular acceleration. The amount of work done by the
external torque will be given by

( )cos cospE θ θ0 1= − (2.31)

This work is stored as the potential energy of the system. We can
then associate potential energy U(q ) with an inclination q  of the dipole.

Similar to other potential energies, there is a freedom in choosing the

angle where the potential energy U is taken to be zero. A natural choice
is to take q

0 
= p / 2. (An explanation for it is provided towards the end of

discussion.)  We can then write,

(2.32)

FIGURE 2.16 Potential energy of a
dipole in a uniform external field.
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This expression can alternately be understood also from Eq. (2.29).

We apply Eq. (2.29) to the present system of two charges +q and –q. The

potential energy  expression then reads

( ) ( ) ( )
2

1 2[ ]
4 2

q
U q V V

a
θ

ε0

= − −′
π ×

r r (2.33)

Here, r
1
 and r

2
 denote the position vectors of +q and –q. Now, the

potential difference between positions r
1
 and r

2
 equals the work done

in bringing a unit positive charge against field from r
2
 to r

1
. The

displacement parallel to the force is 2a cosq. Thus, [V(r
1
)–V (r

2
)] =

–E × 2a cosq . We thus obtain,

( )
2 2

cos
4 2 4 2

θ θ
ε ε0 0

= − − = − −′
π × π ×

p.E
q q

U pE
a a

(2.34)

We note that U¢ (q) differs from U(q ) by a quantity which is just a constant

for a given dipole. Since a constant is insignificant for potential energy, we

can drop the second term in Eq. (2.34) and it then reduces to Eq. (2.32).
We can now understand why we took q

0
=p/2. In this case, the work

done against the external field E in bringing +q and – q are equal and

opposite and cancel out, i.e., q [V (r
1
)  – V (r

2
)]=0.

Example 2.6 A molecule of a substance has a permanent electric

dipole moment of magnitude 10–29 C m. A mole of this substance is

polarised (at low temperature) by applying a strong electrostatic field
of magnitude 106 V m–1. The direction of the field is suddenly changed

by an angle of 60º. Estimate the heat released by the substance in

aligning its dipoles along the new direction of the field. For simplicity,
assume 100% polarisation of the sample.

Solution   Here, dipole moment of each molecules = 10–29 C m

As 1 mole of the substance contains 6 × 1023 molecules,
total dipole moment of all the molecules, p = 6 × 1023 × 10–29 C m

    = 6 × 10–6
 
C m

Initial potential energy, U
i
 = –pE cos q = –6×10–6×106 cos 0° = –6 J

Final potential energy (when q = 60°), U
f
 = –6 × 10–6 × 106 cos 60° = –3 J

Change in potential energy = –3 J – (–6J) = 3 J

So, there is loss in potential energy. This must be the energy released

by the substance in the form of heat in aligning its dipoles.

2.9  ELECTROSTATICS OF CONDUCTORS

Conductors and insulators were described briefly in Chapter 1.
Conductors contain mobile charge carriers. In metallic conductors, these

charge carriers are electrons. In a metal, the outer (valence) electrons

part away from their atoms and are free to move. These electrons are free
within the metal but not free  to leave the metal. The free electrons form a

kind of ‘gas’; they collide with each other and with the ions, and move

randomly in different directions. In an external electric field, they drift
against the direction of the field. The positive ions made up of the nuclei

and the bound electrons remain held in their fixed positions. In electrolytic

conductors, the charge carriers are both positive and negative ions; but
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the situation in this case is more involved – the movement of the charge

carriers is affected both by the external electric field as also by the

so-called chemical forces (see Chapter 3). We shall restrict our discussion
to metallic solid conductors. Let us note important results regarding

electrostatics of conductors.

1. Inside a conductor, electrostatic field is zero

Consider a conductor, neutral or charged. There may also be an external

electrostatic field. In the static situation, when there is no current inside

or on the surface of the conductor, the electric field is zero everywhere

inside the conductor. This fact can be taken as the defining property of a

conductor. A conductor has free electrons. As long as electric field is not

zero, the free charge carriers would experience force and drift. In the

static situation, the free charges have so distributed themselves that the

electric field is zero everywhere inside. Electrostatic field is zero inside a

conductor.

2. At the surface of a charged conductor, electrostatic field
must be normal to the surface at every point

If E were not normal to the surface, it would have some non-zero

component along the surface. Free charges on the surface of the conductor

would then experience force and move. In the static situation, therefore,

E should have no tangential component. Thus electrostatic field at the

surface of a charged conductor must be normal to the surface at every

point. (For a conductor without any surface charge density, field is zero

even at the surface.) See result 5.

3. The interior of a conductor can have no excess charge in
the static situation

A neutral conductor has equal amounts of positive and negative charges

in every small volume or surface element. When the conductor is charged,

the excess charge can reside only on the surface in the static situation.

This follows from the Gauss’s law. Consider any arbitrary volume element

v inside a conductor. On the closed surface S bounding the volume

element v, electrostatic field is zero. Thus the total electric flux through S

is zero. Hence, by Gauss’s law, there is no net charge enclosed by S. But

the surface S can be made as small as you like, i.e., the volume v can be

made vanishingly small. This means there is no net charge at any point

inside the conductor, and any excess charge must reside at the surface.

4. Electrostatic potential is constant throughout the volume
of the conductor and has the same value (as inside) on
its surface

This follows from results 1 and 2 above. Since E = 0 inside the conductor
and has no tangential component on the surface, no work is done in

moving a small test charge within the conductor and on its surface. That

is, there is no potential difference between any two points inside or on
the surface of the conductor. Hence, the result. If the conductor is charged,
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electric field normal to the surface exists; this means potential will be

different for the surface and a point just outside the surface.

In a system of conductors of arbitrary size, shape and
charge configuration, each conductor is characterised by a constant

value of potential, but this constant may differ from one conductor to

the other.

5. Electric field at the surface of a charged conductor

0

ˆ
σ
ε

=E n (2.35)

where s is the surface charge density and n̂  is a unit vector normal

to the surface in the outward direction.

To derive the result, choose a pill box (a short cylinder) as the Gaussian

surface about any point P on the surface, as shown in Fig. 2.17. The pill

box is partly inside and partly outside the surface of the conductor. It
has a small area of cross section d S and negligible height.

Just inside the surface, the electrostatic field is zero; just outside, the

field is normal to the surface with magnitude E. Thus,
the contribution to the total flux through the pill box

comes only from the outside (circular) cross-section

of the pill box. This equals  ± EdS (positive for s > 0,
negative for s < 0), since over the small area dS, E
may be considered constant and E and dS are parallel

or antiparallel. The charge enclosed by the pill box
is  sdS.

By Gauss’s law

EdS = 
0

Sσ δ
ε

E = 
0

σ
ε

(2.36)

Including the fact that electric field is normal to the

surface, we get the vector relation, Eq. (2.35), which

is true for both signs of s. For s > 0, electric field is

normal to the surface outward; for s < 0, electric field

is normal to the surface inward.

6. Electrostatic shielding

Consider a conductor with a cavity, with no charges inside the cavity. A
remarkable result is that the electric field inside the cavity is zero, whatever

be the size and shape of the cavity and whatever be the charge on the

conductor and the external fields in which it might be placed. We have
proved a simple case of this result already: the electric field inside a charged

spherical shell is zero. The proof of the result for the shell makes use of

the spherical symmetry of the shell (see Chapter 1). But the vanishing of
electric field in the (charge-free) cavity of a conductor is, as mentioned

above, a very general result. A related result is that even if the conductor

FIGURE 2.17 The Gaussian surface

(a pill box) chosen to derive Eq. (2.35)
for electric field at the surface of a

charged conductor.
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FIGURE 2.18 The electric field inside a

cavity of any conductor is zero. All
charges reside only on the outer surface

of a conductor with cavity. (There are no

charges placed in the cavity.)

is charged or charges are induced on a neutral

conductor by an external field, all charges reside

only on the outer surface of a conductor with cavity.
The proofs of the results noted in Fig. 2.18 are

omitted here, but we note their important

implication. Whatever be the charge and field
configuration outside, any cavity in a conductor

remains shielded from outside electric influence: the

field inside the cavity is always zero. This is known
as electrostatic shielding. The effect can be made

use of in protecting sensitive instruments from

outside electrical influence. Figure 2.19 gives a
summary of the important electrostatic properties

of a conductor.

Example 2.7
(a) A comb run through one’s dry hair attracts small bits of paper.

Why?
What happens if the hair is wet or if it is a rainy day? (Remember,

a paper does not conduct electricity.)

(b) Ordinary rubber is an insulator. But special rubber tyres of
aircraft are made slightly conducting. Why is this necessary?

(c) Vehicles carrying inflammable materials usually have metallic

ropes touching the ground during motion. Why?
(d) A bird perches on a bare high power line, and nothing happens

to the bird. A man standing on the ground touches the same line

and gets a fatal shock. Why?

Solution
(a) This is because the comb gets charged by friction. The molecules

in the paper gets polarised by the charged comb, resulting  in a
net force of attraction. If the hair is wet, or if it is rainy day, friction

between hair and the comb reduces. The comb does not get

charged and thus it will not attract small bits of paper.

FIGURE 2.19 Some important electrostatic properties of a conductor.
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(b) To enable them to conduct charge (produced by friction) to the

ground;  as too much of static electricity accumulated may result

in spark and result in fire.

(c) Reason similar to (b).

(d) Current passes only when there is difference in potential.

2.10  DIELECTRICS AND POLARISATION

Dielectrics are non-conducting substances. In contrast to conductors,

they have no (or negligible number of ) charge carriers. Recall from Section

2.9 what happens when a conductor is placed in an
external electric field. The free charge carriers move

and charge distribution in the conductor adjusts

itself in such a way that the electric field due to
induced charges opposes the external field within

the conductor. This happens until, in the static

situation, the two fields cancel each other and the
net electrostatic field in the conductor is zero. In a

dielectric, this free movement of charges is not

possible. It turns out that the external field induces
dipole moment by stretching or re-orienting

molecules of the dielectric. The collective effect of all

the molecular dipole moments is net charges on the
surface of the dielectric which produce a field that

opposes the external field. Unlike in a conductor,

however, the opposing field so induced does not
exactly cancel the external field. It only reduces it.

The extent of the effect depends on the

nature of the dielectric. To understand the
effect, we need to look at the charge

distribution of a dielectric at the

molecular level.

The molecules of a substance may be

polar or non-polar. In a non-polar

molecule, the centres of positive and

negative charges coincide. The molecule

then has no permanent (or intrinsic) dipole

moment. Examples of non-polar molecules

are oxygen (O
2
) and hydrogen (H

2
)

molecules which, because of their

symmetry, have no dipole moment. On the

other hand, a polar molecule is one in which

the centres of positive and negative charges

are separated (even when there is no

external field). Such molecules have a

permanent dipole moment. An ionic

molecule such as HCl or a molecule of water

(H
2
O) are examples of polar molecules.

FIGURE 2.20 Difference in behaviour
of a conductor and a dielectric

in an external electric field.

FIGURE 2.21 Some examples of polar

and non-polar molecules.
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In an external electric field, the

positive and negative charges of a non-

polar molecule are displaced in opposite
directions. The displacement stops when

the external force on the constituent

charges of the molecule is balanced by
the restoring force (due to internal fields

in the molecule). The non-polar molecule

thus develops an induced dipole moment.
The dielectric is said to be polarised by

the external field. We consider only the

simple situation when the induced dipole
moment is in the direction of the field and

is proportional to the field strength.

(Substances for which this assumption
is true are called linear isotropic

dielectrics.) The induced dipole moments

of different molecules add up giving a net
dipole moment of the dielectric in the

presence of the external field.

A dielectric with polar molecules also
develops a net dipole moment in an

external field, but for a different reason.

In the absence of any external field, the
different permanent dipoles are oriented

randomly due to thermal agitation; so

the total dipole moment is zero. When
an external field is applied, the individual dipole moments tend  to align

with the field. When summed overall the molecules, there is then a net

dipole moment in the direction of the external field, i.e., the dielectric is
polarised. The extent of polarisation depends on the relative strength of

two mutually opposite factors: the dipole potential energy in the external

field tending to align the dipoles with the field and thermal energy tending
to disrupt the alignment. There may be, in addition, the  ‘induced dipole

moment’ effect as for non-polar molecules, but generally the alignment

effect is more important for polar molecules.
Thus in either case, whether polar or non-polar, a dielectric develops

a net dipole moment in the presence of an external field. The dipole
moment per unit volume is called polarisation and is denoted by P. For
linear isotropic dielectrics,

0ε χ=P Ee (2.37)

where c
e
 is a constant characteristic of the dielectric and is known as the

electric susceptibility of the dielectric medium.

It is possible to relate c
e
 to the molecular properties of the substance,

but we shall not pursue that here.
The question is: how does the polarised dielectric modify the original

external field inside it? Let us consider, for simplicity, a rectangular
dielectric slab placed in a uniform external field E

0
 parallel to two of its

faces. The field causes a uniform polarisation P of the dielectric. Thus

FIGURE 2.22 A dielectric develops a net dipole

moment in an external electric field. (a) Non-polar
molecules, (b) Polar molecules.
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every volume element Dv of the slab has a dipole moment

P Dv in the direction of the field. The volume element Dv  is

macroscopically small but contains a very large number of

molecular dipoles. Anywhere inside the dielectric, the

volume element Dv has no net charge (though it has net

dipole moment). This is, because, the positive charge of one

dipole sits close to the negative charge of the adjacent dipole.

However, at the surfaces of the dielectric normal to the

electric field, there is evidently a net charge density. As seen

in Fig 2.23, the positive ends of the dipoles remain

unneutralised at the right surface and the negative ends at

the left surface. The unbalanced charges are the induced

charges due to the external field.

Thus, the polarised dielectric is equivalent to two charged

surfaces with induced surface charge densities, say s
p

and –s
p
. Clearly, the field produced by these surface charges

opposes the external field. The total field in the dielectric

is, thereby, reduced from the case when no dielectric is

present. We should note that the surface charge density

±s
p 
arises from bound (not free charges) in the dielectric.

2.11  CAPACITORS AND CAPACITANCE

A capacitor is a system of two conductors separated by an insulator
(Fig. 2.24). The conductors have charges, say Q

1
 and Q

2
, and potentials

V
1
 and V

2
. Usually, in practice, the two conductors have charges Q

and – Q, with potential difference V = V
1
 – V

2
 between them. We shall

consider only this kind of charge configuration of the capacitor. (Even a
single conductor can be used as a capacitor by assuming the other at
infinity.) The conductors may be so charged by connecting them to the
two terminals of a battery. Q is called the charge of the capacitor, though
this, in fact, is the charge on one of the conductors – the total charge  of
the capacitor  is zero.

The electric field in the region between the
conductors is proportional to the charge Q. That
is, if the charge on the capacitor is, say  doubled,
the electric field will also be doubled at every point.
(This follows from the direct proportionality
between field and charge implied by Coulomb’s
law and the superposition principle.) Now,
potential difference V is the work done per unit
positive charge in taking a small test charge from
the conductor 2 to 1 against the field.
Consequently, V is also proportional to Q, and the
ratio Q/V is a constant:

Q
C

V
= (2.38)

The constant C is called the capacitance of the capacitor. C is independent
of Q or V, as stated above. The capacitance C depends only on the

FIGURE 2.23 A uniformly
polarised dielectric amounts

to induced surface charge

density, but no volume
charge density.

FIGURE 2.24 A system of two conductors
separated by an insulator forms a capacitor.
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geometrical configuration (shape, size, separation) of the system of two

conductors. [As we shall see later, it also depends on the nature of the

insulator (dielectric) separating the two conductors.]  The SI unit of
capacitance is 1 farad (=1 coulomb volt-1) or 1 F = 1 C V–1. A capacitor

with fixed capacitance is symbolically shown as ---||---, while the one with

variable capacitance is shown as  .

Equation (2.38) shows that for large C, V is small for a given Q. This

means a capacitor with large capacitance can hold large amount of charge

Q at a relatively small V. This is of practical importance. High potential
difference implies strong electric field around the conductors. A strong

electric field can ionise the surrounding air and accelerate the charges so

produced to the oppositely charged plates, thereby neutralising the charge
on the capacitor plates, at least partly. In other words, the charge of the

capacitor leaks away due to the reduction in insulating power of the

intervening medium.
The maximum electric field that a dielectric medium can withstand

without break-down (of its insulating property) is called its dielectric

strength; for air it is about 3 × 106 Vm–1. For a separation between
conductors of the order of 1 cm or so, this field corresponds to a potential

difference of 3 × 104 V between the conductors. Thus, for a capacitor to

store a large amount of charge without  leaking, its capacitance should
be high enough so that the potential difference and hence the electric

field do not exceed the break-down limits. Put differently, there is a limit

to the amount of charge that can be stored on a given capacitor without
significant leaking. In practice, a farad is a very big unit; the most common

units are its sub-multiples 1 mF = 10–6 F, 1 nF = 10–9 F, 1 pF = 10–12 F,

etc. Besides its use in storing charge, a capacitor is a key element of most
ac circuits with important functions, as described in Chapter 7.

2.12  THE PARALLEL PLATE CAPACITOR

A parallel plate capacitor consists of two large plane parallel conducting

plates separated by a small distance (Fig. 2.25). We first take the

intervening medium between the plates to be

vacuum. The effect of a dielectric medium between

the plates is discussed in the next section. Let A be

the area of each plate and d the separation between

them. The two plates have charges Q and –Q. Since

d is much smaller than the linear dimension of the

plates (d2 << A), we can use the result on electric

field by an infinite plane sheet of uniform surface

charge density (Section 1.15). Plate 1 has surface

charge density s = Q/A and plate 2 has a surface

charge density –s. Using Eq. (1.33), the electric field

in different regions is:

Outer region I (region  above the plate 1),

0 0

0
2 2

E
σ σ
ε ε

= − = (2.39)

FIGURE 2.25  The parallel plate capacitor.
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Outer region II (region below the plate 2),

0 0

0
2 2

E
σ σ
ε ε

= − = (2.40)

In the inner region between the plates 1 and 2, the electric fields due

to the two charged plates add up, giving

0 0 0 02 2

Q
E

A

σ σ σ
ε ε ε ε

= + = = (2.41)

The direction of electric field is from the positive to the negative plate.

Thus, the electric field is localised between the two plates and is

uniform throughout. For plates with finite area, this will not be true near

the outer boundaries of the plates. The field lines bend outward at the

edges — an effect called ‘fringing of the field’. By the same token, s will

not be strictly uniform on the entire plate. [E and s are related by Eq.

(2.35).] However, for d2 << A, these effects can be ignored in the regions

sufficiently far from the edges, and the field there is given by Eq. (2.41).

Now for uniform electric field, potential difference is simply the electric

field times the distance between the plates, that is,

0

1 Qd
V E d

Aε
= = (2.42)

The capacitance C of the parallel plate capacitor is then

Q
C

V
=  = 

0 A

d

ε
= (2.43)

which, as expected, depends only on the geometry of the system. For
typical values like A = 1 m2, d = 1 mm, we get

12 2 –1 –2 2
9

3

8.85 10 C N m 1m
8.85 10 F

10 m
C

−
−

−

× ×= = × (2.44)

(You can check that if 1F= 1C V–1 = 1C (NC–1m)–1 = 1 C2 N–1m–1.)

This shows that 1F is too big a unit in practice, as remarked earlier.
Another way of seeing the ‘bigness’ of 1F is to calculate the area of the

plates needed to have C = 1F for a separation of, say 1 cm:

0

Cd
A

ε
= =

2
9 2

12 2 –1 –2

1F 10 m
10 m

8.85 10 C N m

−

−
× =

×
(2.45)

which is a plate about 30 km in length and breadth!

2.13  EFFECT OF DIELECTRIC ON CAPACITANCE

With the understanding of the behaviour of dielectrics in an external

field developed in Section 2.10, let us see how the capacitance of a parallel
plate capacitor is modified when a dielectric is present. As before, we

have two large plates, each of area A, separated by a distance d. The

charge on the plates is ±Q, corresponding to the charge density ±s (with
s = Q/A). When there is vacuum between the plates,

0
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and the potential difference  V
0 
is

V
0
 = E

0
d

The capacitance C
0
 in this case is

0 0

0

Q A
C

V d
ε= = (2.46)

Consider next a dielectric inserted between the plates fully occupying

the intervening region. The dielectric is polarised by the field and, as

explained in Section 2.10, the effect is equivalent to two charged sheets
(at the surfaces of the dielectric normal to the field) with surface charge

densities s
p
 and –s

p
. The electric field in the dielectric then corresponds

to the case when the net surface charge density on the plates is ±(s – s
p
).

That is,

0

PE
σ σ

ε
−

= (2.47)

so that the potential difference across the plates is

0

PV E d d
σ σ

ε
−

= = (2.48)

For linear dielectrics, we expect s
p
 to be proportional to E

0
, i.e., to s.

Thus, (s – s
p
)
 
is proportional to s  and we can write

P
K

σσ σ− = (2.49)

where K is a constant characteristic of the dielectric. Clearly,  K > 1. We

then have

0 0

d Qd
V

K A K

σ
ε ε

= = (2.50)

The capacitance C, with dielectric between the plates, is then

0KAQ
C

V d

ε
= = (2.51)

 The product e
0
K is called the permittivity of the medium and is

denoted by e
e = e

0 
K (2.52)

For vacuum K = 1 and e = e
0
; e

0
 is called the permittivity of the vacuum.

The dimensionless ratio

0

K
ε
ε

= (2.53)

is called the dielectric constant of the substance. As remarked before,

from Eq. (2.49), it is clear that K is greater than 1. From Eqs. (2.46) and

(2. 51)

0

C
K

C
= (2.54)

Thus, the dielectric constant of a substance is the factor (>1) by which

the capacitance increases from its vacuum value, when the dielectric is

inserted fully between the plates of a capacitor. Though we arrived at
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Eq. (2.54) for the case of a parallel plate capacitor, it holds good for any

type of capacitor and can, in fact, be viewed in general as a definition of

the dielectric constant of a substance.

Example 2.8 A slab of material of dielectric constant K has the same
area as the plates of a parallel-plate capacitor but has a thickness

(3/4)d, where d is the separation of the plates. How is the capacitance

changed when the slab is inserted between the plates?

Solution Let  E
0
 = V

0
/d be the electric field between the plates when

there is no dielectric and the potential difference is V
0
. If the dielectric

is now inserted, the electric field in the dielectric will be E = E
0
/K.

The potential difference will then be

0
0

1 3
( ) ( )
4 4

E
V E d d

K
= +

0 0

1 3 3
( )
4 4 4

K
E d V

K K

+= + =

The potential difference decreases by the factor (K + 3)/4K while the
free charge Q

0 
on the plates remains unchanged. The capacitance

thus increases

0 0
0

0

4 4

3 3

Q QK K
C C

V K V K
= = =

+ +

2.14  COMBINATION OF CAPACITORS

We can combine several capacitors of

capacitance C
1
, C

2
,…, C

n
 to obtain a system with

some effective capacitance C. The effective

capacitance depends on the way the individual

capacitors are combined. Two simple
possibilities are discussed below.

2.14.1  Capacitors in series

Figure 2.26 shows capacitors C
1 

and C
2

combined in series.

The left plate of C
1 
and the right plate of C

2

are connected to two terminals of a battery and
have charges Q and –Q , respectively. It then

follows that the right plate of
 
C

1 
has charge –Q

and the left plate of C
2 
 has charge Q. If this was

not so, the net charge on each capacitor would

not be zero. This would result in an electric field

in the conductor connecting C
1
and C

2
. Charge

would flow until the net charge on both C
1 
and

C
2 

is zero and there is no electric field in the

conductor connecting C
1 

and C
2
.
 
Thus, in the

series combination, charges on the two plates

(±Q) are the same on each capacitor. The total

FIGURE 2.26  Combination of two
capacitors in series.

FIGURE 2.27  Combination of n
capacitors in series.

2024-25



Physics

72

potential drop V across the combination is the sum of the potential drops

V
1
 and V

2 
across C

1
 and C

2
,
 
respectively.

V = V
1
 + V

2
 = 

1 2

Q Q

C C
+ (2.55)

i.e., 
1 2

1 1V

Q C C
= + , (2.56)

Now we can regard the combination as an effective capacitor with
charge Q and potential difference V. The effective capacitance of the

combination is

Q
C

V
= (2.57)

We compare Eq. (2.57) with Eq. (2.56), and obtain

1 2

1 1 1

C C C
= + (2.58)

The proof clearly goes through for any number of capacitors arranged

in a similar way. Equation (2.55), for n capacitors arranged in series,

generalises to

1 2 n

1 2 n

... ...
Q Q Q

V V V V
C C C

= + + + = + + + (2.59)

Following the same steps as for the case of two
capacitors, we get the general formula for effective

capacitance of a series combination of n capacitors:

1 2 3 n

1 1 1 1 1
...

C C C C C
= + + + + (2.60)

2.14.2  Capacitors in parallel

Figure 2.28 (a) shows two capacitors arranged in
parallel. In this case, the same potential difference is
applied across both the capacitors. But the plate charges
(±Q

1
) on capacitor 1 and the plate charges (±Q

2
) on the

capacitor 2 are not necessarily the same:
Q

1
 = C

1
V, Q

2
 = C

2
V (2.61)

The equivalent capacitor is one with charge
Q = Q

1
 + Q

2
(2.62)

and potential difference V.
Q = CV = C

1
V + C

2
V (2.63)

The effective capacitance C is, from Eq. (2.63),
C = C

1
 + C

2
(2.64)

The general formula for effective capacitance C for
parallel combination of n capacitors [Fig. 2.28 (b)]
follows similarly,

Q = Q
1
 + Q

2 
+ ... + Q

n
(2.65)

i.e., CV = C
1
V + C

2
V + ... C

n
V(2.66)

which gives
C = C

1
 + C

2
 + ... C

n
(2.67)

FIGURE 2.28 Parallel combination of
(a) two capacitors, (b) n capacitors.
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FIGURE 2.29

Example 2.9 A network of four 10 mF capacitors is connected to a 500 V

supply, as shown in Fig. 2.29. Determine (a) the equivalent capacitance

of the network and (b) the charge on each capacitor. (Note, the charge on
a capacitor is the charge on the plate with higher potential, equal and

opposite to the charge on the plate with lower potential.)

Solution
(a) In the given network, C

1
, C

2
 and C

3
 are connected in series. The

effective capacitance C¢ of these three capacitors is given by

1 2 3

1 1 1 1

C C C C
= + +

′
For C

1 
= C

2 
= C

3 
= 10 mF,  C¢ = (10/3) mF. The network has  C¢ and C

4

connected in parallel. Thus, the equivalent capacitance C of the

network is

C = C¢ + C
4 
= 

10

3
10+





 mF =13.3mF

(b) Clearly, from the figure, the charge on each of the capacitors, C
1
,

C
2
 and C

3 
is the same, say Q. Let the charge on C

4 
be Q¢. Now, since

the potential difference across AB is  Q/C
1
, across BC is Q/C

2
, across

CD is  Q/C
3 

, we have

1 2 3

500 V
Q Q Q

C C C
+ + = .

Also, Q¢/C
4 

= 500 V.

This gives for the given value of the capacitances,

310
500 F 1.7 10 C

3
Q V −= × µ = ×  and

3500 10 F 5.0 10 CQ V −= × µ = ×′

2.15  ENERGY STORED IN A CAPACITOR

A capacitor, as we have seen above, is a system of two conductors with

charge Q and –Q. To determine the energy stored in this configuration,

consider initially two uncharged conductors 1 and 2. Imagine next a

process of transferring charge from conductor 2 to conductor 1 bit by
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bit, so that at the end, conductor 1 gets charge Q. By

charge conservation, conductor 2 has charge –Q at

the end (Fig 2.30 ).

In transferring positive charge from conductor 2

to conductor 1, work will be done externally, since at

any stage conductor 1 is at a higher potential than

conductor 2. To calculate the total work done, we first

calculate the work done in a small step involving

transfer of an infinitesimal (i.e., vanishingly small)

amount of charge. Consider the intermediate situation

when the conductors 1 and 2 have charges Q¢ and

–Q¢ respectively. At this stage, the potential difference

V¢ between conductors 1 to 2 is Q¢/C, where C is the

capacitance of the system. Next imagine that a small

charge d Q¢ is transferred from conductor 2 to 1. Work

done in this step (d W), resulting in charge Q ¢ on

conductor 1 increasing to Q¢+ d Q¢, is given by

Q
W V Q Q

C
δ δ δ′= =′ ′ ′ (2.68)

Integrating eq. (2.68)

W
Q

C
Q

C

Q Q

C

Q Q

= ′ = ′ =∫
0

2

0

21

2 2
δ ’

We can write the final result, in different ways

2
21 1

2 2 2

Q
W CV QV

C
= = = (2.69)

Since electrostatic force is conservative, this work is stored in the form

of potential energy of the system. For the same reason, the final result for
potential energy [Eq. (2.69)] is independent of the manner in which the
charge configuration of the capacitor is built up. When the capacitor

discharges, this stored-up energy is released. It is possible to view the
potential energy of the capacitor as ‘stored’ in the electric field between
the plates. To see this, consider for simplicity, a parallel plate capacitor

[of area A (of each plate) and separation d between the plates].
Energy stored in the capacitor

= 
2 2

0

1 ( )

2 2

Q A d

C A

σ
ε

= × (2.70)

The surface charge density s is related to the electric field E between
the plates,

0

E
σ
ε

= (2.71)

From Eqs. (2.70) and (2.71) , we get
Energy stored in the capacitor

U = ( ) 2
01/2 E A dε × (2.72)

FIGURE 2.30 (a) Work done in a small
step of building charge on conductor 1

from Q¢ to Q¢ + d Q¢. (b)  Total work done
in charging the capacitor may be
viewed as stored in the energy of

electric field between the plates.
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Note that Ad is the volume of the region between the plates (where

electric field alone exists). If we define energy density as energy stored

per unit volume of space, Eq (2.72) shows that

Energy density of electric field,

u =(1/2)e
0
E2 (2.73)

Though we derived Eq. (2.73) for the case of a parallel plate

capacitor, the result on energy density of an electric field is, in fact,

very general and holds true for electric field due to any configuration

of charges.

Example 2.10 (a) A 900 pF capacitor is charged by 100 V battery

[Fig. 2.31(a)]. How much electrostatic energy is stored by the capacitor?

(b) The capacitor is disconnected from the battery and connected to

another 900 pF capacitor [Fig. 2.31(b)]. What is the electrostatic

energy stored by the system?

FIGURE 2.31

Solution

(a) The charge on the capacitor is

      Q = CV = 900 × 10–12 F × 100 V = 9 × 10–8 C

The energy stored by the capacitor is

      = (1/2) CV 2 = (1/2) QV

= (1/2) × 9 × 10–8C × 100 V = 4.5 × 10–6 J

(b) In the steady situation, the two capacitors have their positive

plates at the same potential, and their negative plates at the

same potential. Let the common potential difference be V¢. The
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charge on each capacitor is then Q¢ = CV¢. By charge conservation,

Q¢  = Q/2. This implies V¢  = V/2. The total energy of the system is

61 1
2 ' ' 2.25 10 J

2 4
Q V QV −= × = = ×

Thus in going from (a) to (b), though no charge is lost; the final

energy is only half the initial energy. Where has the remaining energy

gone?

There is a transient period before the system settles to the

situation (b). During this period, a transient current flows from

the first capacitor to the second. Energy is lost during this time in

the form of heat and electromagnetic radiation.

 E
X

A
M

P
L
E
 2

.1
0

SUMMARY

1. Electrostatic force is a conservative force. Work done by an external

force (equal and opposite to the electrostatic force) in bringing a charge

q from a point R to a point P is q(V
P
–V

R
), which is the difference in

potential energy of charge q between the final and initial points.

2. Potential at a point is the work done per unit charge (by an external

agency) in bringing a charge from infinity to that point. Potential at a

point is arbitrary to within an additive constant, since it is the potential

difference between two points which is physically significant. If potential

at infinity is chosen to be zero; potential at a point with position vector

r due to a point charge Q placed at the origin is given is given by

1
( )

4 o

Q
V

rε
=

π
r

3. The electrostatic potential at a point with position vector r due to a

point dipole of dipole moment p placed at the origin is

2

ˆ1
( )

4 ε
=

π
p.r

r
o

V
r

The result is true also for a dipole (with charges –q and q separated by

2a)  for r >> a.

4. For a charge configuration q
1
, q

2
, ..., q

n
 with position vectors r

1
,

r
2
, ... r

n
, the potential at a point P is given by the superposition principle

1 2

0 1P 2P P

1
( ... )

4

n

n

qq q
V

r r rε
= + + +

π

where r
1P

 is the distance between q
1
 and P, as and so on.

5. An equipotential surface is a surface over which potential has a constant

value. For a point charge, concentric spheres centred at a location of the

charge are equipotential surfaces. The electric field E at a point is

perpendicular to the equipotential surface through the point. E is in the

direction of the steepest decrease of potential.
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6. Potential energy stored in a system of charges is the work done (by an

external agency) in assembling the charges at their locations. Potential

energy of two charges q
1
, q

2
 at r

1
, r

2
 is given by

1 2

0 12

1

4

q q
U

rε
=

π
where r

12
 is distance between q

1
 and q

2
.

7. The potential energy of a charge q in an external potential V (r) is qV (r).

The potential energy of a dipole moment p in a uniform electric field E

is  –p.E.

 8. Electrostatics field E is zero in the interior of a conductor; just outside

the surface of a charged conductor, E is normal to the surface given by

0

ˆ
σ
ε

=E n  where n̂  is the unit vector along the outward normal to the

surface and s is the surface charge density. Charges in a conductor can

reside only at its surface. Potential is constant within and on the surface

of a conductor. In a cavity within a conductor (with no charges), the

electric field is zero.

9.  A capacitor is a system of two conductors separated by an insulator. Its

capacitance is defined by C = Q/V, where Q and –Q are the charges on the

two conductors and V is the potential difference between them. C is

determined purely geometrically, by the shapes, sizes and relative

positions of the two conductors. The unit of capacitance is farad:,

1 F = 1 C V –1. For a parallel plate capacitor (with vacuum between the

plates),

C = 
0

A

d
ε

where A is the area of each plate and d the separation between them.

10. If the medium between the plates of a capacitor is filled with an insulating

substance (dielectric), the electric field due to the charged plates induces

a net dipole moment in the dielectric. This effect, called polarisation,

gives rise to a field in the opposite direction. The net electric field inside

the dielectric and hence the potential difference between the plates is

thus reduced. Consequently, the capacitance C increases from its value

C
0
 when there is no medium (vacuum),

C = KC
0

where K is the dielectric constant of the insulating substance.

11. For capacitors in the series combination, the total capacitance C is given by

1 2 3

1 1 1 1
...

C C C C
= + + +

In the parallel combination, the total capacitance C is:

C =  C
1
 + C

2
 + C

3
 + ...

where C
1
, C

2
, C

3
... are individual capacitances.

2024-25



Physics

78

12. The energy U stored in a capacitor of capacitance C, with charge Q and

voltage V is

U QV CV
Q

C
= = =1

2

1

2

1

2

2
2

The electric energy density (energy per unit volume) in a region with

electric field is (1/2)e
0
E2.

Physical quantity Symbol Dimensions Unit  Remark

Potential  or V [M1 L2 T–3 A–1] V Potential difference is

physically significant

Capacitance C [M–1 L–2 T–4 A2] F

Polarisation P [L–2 AT] C m-2 Dipole moment per unit

volume

Dielectric constant K [Dimensionless]

POINTS TO PONDER

1. Electrostatics deals with forces between charges at rest. But if there is a

force on a charge, how can it be at rest? Thus, when we are talking of

electrostatic force between charges, it should be understood that each

charge is being kept at rest by some unspecified force that opposes the

net Coulomb force on the charge.

2. A capacitor is so configured that it confines the electric field lines within

a small region of space. Thus, even though field may have considerable

strength, the potential difference between the two conductors of a

capacitor is small.

3. Electric field is discontinuous across the surface of a spherical charged

shell. It is zero inside and 
σ
ε0

n̂ outside. Electric potential is, however

continuous across the surface, equal to q/4pe
0
R  at the surface.

4. The torque p × E on a dipole causes it to oscillate about E. Only if there

is a dissipative mechanism, the oscillations are damped and the dipole

eventually aligns with E.

5. Potential due to a charge q at its own location is not defined – it is

infinite.

6. In the expression qV (r) for potential energy of a charge q, V (r) is the

potential due to external charges and not the potential due to q. As seen

in point 5, this expression will be ill-defined if V (r) includes potential

due to a charge q itself.
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7. A cavity inside a conductor is shielded from outside electrical influences.

It is worth noting that electrostatic shielding does not work the other

way round; that is, if you put charges inside the cavity, the exterior of

the conductor is not shielded from the fields by the inside charges.

EXERCISES

2.1 Two charges 5 × 10–8 C and –3 × 10–8 C are located 16 cm apart. At

what point(s) on the line joining the two charges is the electric

potential zero? Take the potential at infinity to be zero.

2.2 A regular hexagon of side 10 cm has a charge 5 mC at each of its

vertices. Calculate the potential at the centre of the hexagon.

2.3 Two charges 2 mC and –2 mC are placed at points A and B 6 cm

apart.

(a) Identify an equipotential surface of the system.

(b) What is the direction of the electric field at every point on this

surface?

2.4 A spherical conductor of radius 12 cm has a charge of 1.6 × 10–7C

distributed uniformly on its surface. What is the electric field

(a) inside the sphere

(b) just outside the sphere

(c) at a point 18 cm from the centre of the sphere?

2.5 A parallel plate capacitor with air between the plates has a

capacitance of 8 pF (1pF = 10–12 F). What will be the capacitance if

the distance between the plates is reduced by half, and the space

between them is filled with a substance of dielectric constant 6?

2.6 Three capacitors each of capacitance 9 pF are connected in series.

(a) What is the total capacitance of the combination?

(b) What is the potential difference across each capacitor if the

combination is connected to a 120 V supply?

2.7 Three capacitors of capacitances 2 pF, 3 pF and 4 pF are connected

in parallel.

(a) What is the total capacitance of the combination?

(b) Determine the charge on each capacitor if the combination is

connected to a 100 V supply.

2.8 In a parallel plate capacitor with air between the plates, each plate

has an area of 6 × 10–3 m2 and the distance between the plates is 3 mm.

Calculate the capacitance of the capacitor. If this capacitor is

connected to a 100 V supply, what is the charge on each plate of the

capacitor?
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2.9 Explain what would happen if in the capacitor given in Exercise

2.8, a 3 mm thick mica sheet (of dielectric constant = 6) were inserted

between the plates,

(a) while the voltage supply remained connected.

(b) after the supply was disconnected.

2.10 A 12pF capacitor is connected to a 50V battery. How much

electrostatic energy is stored in the capacitor?

2.11 A 600pF capacitor is charged by a 200V supply. It is then

disconnected from the supply and is connected to another

uncharged 600 pF capacitor. How much electrostatic energy is lost

in the process?
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3.1  INTRODUCTION

In Chapter 1, all charges whether free or bound, were considered to be at

rest. Charges in motion constitute an electric current. Such currents occur

naturally in many situations. Lightning is one such phenomenon in

which charges flow from the clouds to the earth through the atmosphere,

sometimes with disastrous results. The flow of charges in lightning is not

steady, but in our everyday life we see many devices where charges flow

in a steady manner, like water flowing smoothly in a river. A torch and a

cell-driven clock are examples of such devices. In the present chapter, we

shall study some of the basic laws concerning steady electric currents.

3.2  ELECTRIC CURRENT

Imagine a small area held normal to the direction of flow of charges. Both

the positive and the negative charges may flow forward and backward

across the area. In a given time interval t, let q
+
 be the net amount (i.e.,

forward minus backward) of positive charge that flows in the forward

direction across the area. Similarly, let q
–
 be the net amount of negative

charge flowing across the area in the forward direction. The net amount

of charge flowing across the area in the forward direction in the time

interval t, then, is q = q
+
– q

–
. This is proportional to t for steady current

Chapter Three

CURRENT

ELECTRICITY
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and the quotient

q
I

t
= (3.1)

is defined to be the current across the area in the forward direction. (If it

turn out to be a negative number, it implies a current in the backward
direction.)

Currents are not always steady and hence more generally, we define

the current as follows. Let DQ be the net charge flowing across a cross-
section of a conductor during the time interval Dt [i.e., between times t

and (t + Dt)]. Then, the current at time t across the cross-section of the

conductor is defined as the value of the ratio of DQ to Dt in the limit of Dt

tending to zero,

( )
0

lim
t

Q
I t

t∆ →

∆≡
∆ (3.2)

In SI units, the unit of current is ampere. An ampere is defined
through magnetic effects of currents that we will study in the following

chapter. An ampere is typically the order of magnitude of currents in

domestic appliances. An average lightning carries currents of the order
of tens of thousands of amperes and at the other extreme, currents in

our nerves are in microamperes.

3.3 ELECTRIC CURRENTS IN CONDUCTORS

An electric charge will experience a force if an electric field is applied. If it is

free to move, it will thus move contributing to a current. In nature, free
charged particles do exist like in upper strata of atmosphere called the

ionosphere. However, in atoms and molecules, the negatively charged

electrons and the positively charged nuclei are bound to each other and
are thus not free to move. Bulk matter is made up of many molecules, a

gram of water, for example, contains approximately 1022 molecules. These

molecules are so closely packed that the electrons are no longer attached
to individual nuclei. In some materials, the electrons will still be bound,

i.e., they will not accelerate even if an electric field is applied. In other

materials, notably metals, some of the electrons are practically free to move
within the bulk material. These materials, generally called conductors,

develop electric currents in them when an electric field is applied.
If we consider solid conductors, then of course the atoms are tightly

bound to each other so that the current is carried by the negatively
charged electrons. There are, however, other types of conductors like
electrolytic solutions where positive and negative charges both can move.
In our discussions, we will focus only on solid conductors so that the
current is carried by the negatively charged electrons in the background
of fixed positive ions.

Consider first the case when no electric field is present. The electrons

will be moving due to thermal motion during which they collide with the

fixed ions. An electron colliding with an ion emerges with the same speed
as before the collision. However, the direction of its velocity after the

collision is completely random. At a given time, there is no preferential

direction for the velocities of the electrons. Thus on the average, the
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number of electrons travelling in any direction will be equal to the number

of electrons travelling in the opposite direction. So, there will be no net

electric current.
Let us now see what happens to such a

piece of conductor if an electric field is applied.

To focus our thoughts, imagine the conductor
in the shape of a cylinder of radius R (Fig. 3.1).

Suppose we now take two thin circular discs

of a dielectric of the same radius and put
positive charge +Q distributed over one disc

and similarly –Q at the other disc. We attach

the two discs on the two flat surfaces of the
cylinder. An electric field will be created and

is directed from the positive towards the

negative charge. The electrons will be accelerated due to this field towards
+Q. They will thus move to neutralise the charges. The electrons, as long

as they are moving, will constitute an electric current. Hence in the

situation considered, there will be a current for a very short while and no
current thereafter.

We can also imagine a mechanism where the ends of the cylinder are

supplied with fresh charges to make up for any charges neutralised by
electrons moving inside the conductor. In that case, there will be a steady

electric field in the body of the conductor. This will result in a continuous

current rather than a current for a short period of time. Mechanisms,
which maintain a steady electric field are cells or batteries that we shall

study  later in this chapter. In the next sections, we shall study the steady

current that results from a steady electric field in conductors.

3.4  OHM’S LAW

A basic law regarding flow of currents was discovered by G.S. Ohm in
1828, long before the physical mechanism responsible for flow of currents

was discovered. Imagine a conductor through which a current I is flowing

and let V be the potential difference between the ends of the conductor.
Then Ohm’s law states that

     V µ I

or, V = R I (3.3)

where the constant of proportionality R is called the resistance of the

conductor. The SI units of resistance is ohm, and is denoted by the symbol

W. The resistance R not only depends on the material of the conductor

but also on the dimensions of the conductor. The dependence of R on the

dimensions of the conductor can easily be determined as follows.

Consider a conductor satisfying Eq. (3.3) to be in the form of a slab of

length l and cross sectional area A [Fig. 3.2(a)]. Imagine placing two such

identical slabs side by side [Fig. 3.2(b)], so that the length of the
combination is 2l. The current flowing through the  combination is the

same as that flowing through either of the slabs. If V is the potential

difference across the ends of the first slab, then V is also the potential
difference across the ends of the second slab since the second slab is

FIGURE 3.1 Charges +Q and –Q put at the ends

of a metallic cylinder. The electrons will drift
because of the electric field created to

neutralise the charges. The current thus

will stop after a while unless the charges +Q

and –Q are continuously replenished.

FIGURE 3.2
Illustrating the

relation R = rl/A for

a rectangular slab

of length l and area
of cross-section A.
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identical to the first and the same current I flows through

both. The potential difference across the ends of the

combination is clearly sum of the potential difference
across the two individual slabs and hence equals 2V. The

current through the combination is I and the resistance

of the combination R
C
 is [from Eq. (3.3)],

2
2C

V
R R

I
= = (3.4)

since V/I = R, the resistance of either of the slabs. Thus,

doubling the length of a conductor doubles the
resistance. In general, then resistance is proportional to

length,

R l∝ (3.5)

Next, imagine dividing the slab into two by cutting it

lengthwise so that the slab can be considered as a
combination of two identical slabs of length l , but each

having a cross sectional  area of A/2 [Fig. 3.2(c)].

For a given voltage V across the slab, if I is the current
through the entire slab, then clearly the current flowing

through each of the two half-slabs is I/2. Since the

potential difference across the ends of the half-slabs is V,
i.e., the same as across the full slab, the resistance of each

of the half-slabs R
1
 is

1 2 2 .
( /2)

V V
R R

I I
= = = (3.6)

Thus, halving the area of the cross-section of a conductor doubles

the resistance. In general, then the resistance R is inversely proportional

to the cross-sectional area,

1
R

A
∝ (3.7)

Combining Eqs. (3.5) and (3.7), we have

l
R

A
∝ (3.8)

and hence for a given conductor

l
R

A
ρ= (3.9)

where the constant of proportionality r depends on the material of the
conductor but not on its dimensions. r is called resistivity.

Using the last equation, Ohm’s law reads

I l
V I R

A

ρ= × = (3.10)

Current per unit area (taken normal to the current), I/A, is called
current density and is denoted by j. The SI units of the current density

are A/m2. Further, if E is the magnitude of uniform electric field in the

conductor whose length is l, then the potential difference V across its
ends is El. Using these, the last equation reads

G
E

O
R

G
 S

IM
O

N
 O

H
M

 (
1
7
8
7
–
1

8
5
4
)

Georg Simon Ohm  (1787–
1854) German physicist,

professor at Munich. Ohm

was led to his law by an
analogy between the

conduction of heat: the

electric field is analogous to
the temperature gradient,

and the electric current is
analogous to the heat flow.
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        E l = j r l

or,    E = j r (3.11)

The above relation for magnitudes E and j can indeed be cast in a
vector  form. The current density, (which we have defined as the current

through unit area normal to the current) is also directed along E, and is

also a vector j (ººººº j E/E). Thus, the last equation can be written as,

        E = jr (3.12)

or,   j = s E (3.13)

where s º1/r is called the conductivity. Ohm’s law is often stated in an
equivalent form, Eq. (3.13) in addition to Eq.(3.3). In the next section, we

will try to understand the origin of the Ohm’s law as arising from the

characteristics of the drift of electrons.

3.5 DRIFT OF ELECTRONS AND THE ORIGIN

OF RESISTIVITY

As remarked before, an electron will suffer collisions with the heavy fixed

ions, but after collision, it will emerge with the same speed but in random

directions. If we consider all the electrons, their average velocity will be
zero since their directions are random. Thus, if there are N electrons and

the velocity of the ith electron (i = 1, 2, 3, ... N ) at a given time is v
i
, then

1
0

1N
i

i

v =
=
∑
N

(3.14)

Consider now the situation when an electric field is

present. Electrons will be accelerated due to this
field by

=
– E

a
e

m
(3.15)

where –e is the charge and m is the mass of an electron.

Consider again the ith electron at a given time t. This

electron would have had its last collision some time
before t, and let t

i
 be the time elapsed after its last

collision. If v
i
 was its velocity immediately after the last

collision, then its velocity V
i
 at time t is

−  = +     

E
V vi i i

e
t

m
(3.16)

since starting with its last collision it was accelerated

(Fig. 3.3) with an acceleration given by Eq. (3.15) for a

time interval t
i
. The average velocity of the electrons at

time t is the average of all the V
i
’s. The average of v

i
’s is

zero [Eq. (3.14)] since immediately after any collision,

the direction of the velocity of an electron is completely
random. The collisions of the electrons do not occur at

regular intervals but at random times. Let us denote by

t, the average time between successive collisions. Then
at a given time, some of the electrons would have spent

FIGURE 3.3 A schematic picture of

an electron moving from a point A to
another point B through repeated

collisions, and straight line travel

between collisions (full lines). If an
electric field is applied as shown, the

electron ends up at point B¢ (dotted

lines). A slight drift in a direction
opposite the electric field is visible.
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time more than t and some less than t. In other words, the time t
i
 in

Eq. (3.16) will be less than t for some and more than t for others as we go

through the values of i = 1, 2 ..... N. The average value of t
i
 then is t

(known as relaxation time). Thus, averaging Eq. (3.16) over the

N-electrons at any given time t gives us for the average velocity v
d

( ) ( ) ( )≡ = − E
v V vd i i iaverage average average

e
t

m

0 – τ τ= = −
E Ee e

m m
(3.17)

This last result is surprising. It tells us that the
electrons move with an average velocity which is

independent of time, although electrons are

accelerated. This is the phenomenon of drift and the
velocity v

d
 in Eq. (3.17) is called the drift velocity.

Because of the drift, there will be net transport of

charges across any area perpendicular to E. Consider
a planar area A, located inside the conductor such that

the normal to the area is parallel to E (Fig. 3.4). Then

because of the drift, in an infinitesimal amount of time
Dt, all electrons to the left of the area at distances upto

|v
d
|Dt would have crossed the area. If n is the number

of free electrons per unit volume in the metal, then
there are n Dt |v

d
|A such electrons. Since each

electron carries a charge –e, the total charge transported across this area

A to the right in time Dt is –ne A|v
d
|Dt. E is directed towards the left and

hence the total charge transported along E across the area is negative of

this. The amount of charge crossing the area A in time Dt is by definition

[Eq. (3.2)] I Dt, where I is the magnitude of the current. Hence,

v∆ = + ∆dI t n e A t (3.18)

Substituting the value of |v
d
| from Eq. (3.17)

2

Eτ∆ = ∆e A
I t n t

m
(3.19)

By definition I is related to the magnitude |j| of the current density by

I = |j|A (3.20)

Hence, from Eqs.(3.19) and (3.20),

2

j Eτ= ne

m
(3.21)

The vector j is parallel to E and hence we can write Eq. (3.21) in the
vector form

2

τ=j E
ne

m
(3.22)

Comparison with Eq. (3.13) shows that Eq. (3.22) is exactly the Ohm’s
law, if we identify the conductivity s  as

FIGURE 3.4 Current in a metallic
conductor. The magnitude of current

density in a metal is the magnitude of

charge contained in a cylinder of unit
area and length v

d
.
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2
ne

m
σ τ= (3.23)

We thus see that a very simple picture of electrical conduction
reproduces Ohm’s law. We have, of course, made assumptions that t

and n are constants, independent of E. We shall, in the next section,
discuss the limitations of Ohm’s law.

Example 3.1 (a) Estimate the average drift speed of conduction
electrons in a copper wire of cross-sectional area 1.0 × 10–7 m2 carrying
a current of 1.5 A. Assume that each copper atom contributes roughly

one conduction electron. The density of copper is 9.0 × 103 kg/m3,
and its atomic mass is 63.5 u. (b) Compare the drift speed obtained
above with, (i) thermal speeds of copper atoms at ordinary

temperatures, (ii) speed of propagation of electric field along the
conductor which causes the drift motion.

Solution

(a) The direction of drift velocity of conduction electrons is opposite
to the electric field direction, i.e., electrons drift in the direction
of increasing potential. The drift speed v

d
 is given by Eq. (3.18)

v
d
  = (I/neA)

Now, e = 1.6 × 10–19 C, A = 1.0 × 10–7m2, I = 1.5 A. The density of
conduction electrons, n is equal to the number of atoms per cubic

metre (assuming one conduction electron per Cu atom as is
reasonable from its valence electron count of one). A cubic metre
of copper has a mass of 9.0 × 103 kg. Since 6.0 × 1023 copper

atoms have a mass of 63.5 g,

23
66.0 10

9.0 10
63.5

n
×

= × ×

   = 8.5 × 1028 m–3

which gives,

28 –19 –7

1.5

8.5 10 1.6 10 1.0 10
=

× × × × ×d
v

    = 1.1 × 10–3 m s–1  = 1.1 mm s–1

(b) (i) At a temperature T, the thermal speed* of a copper atom of

mass M is obtained from [<(1/2) Mv
2 > = (3/2) k

B
T ] and is thus

typically of the order of /Bk T M , where k
B
 is the Boltzmann

constant. For copper at 300 K, this is about 2 × 102 m/s. This
figure indicates the random vibrational speeds of copper atoms
in a conductor. Note that the drift speed of electrons is much

smaller, about 10–5 times the typical thermal speed at ordinary
temperatures.
(ii) An electric field travelling along the conductor has a speed of

an electromagnetic wave, namely equal to 3.0 × 108 m s–1

(You will learn about this in Chapter 8). The drift speed is, in

comparison, extremely small; smaller by a factor of 10–11.

* See Eq. (12.23) of Chapter 12 from Class XI book.
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Example 3.2

(a) In Example 3.1, the electron drift speed is estimated to be only a
few mm s–1 for currents in the range of a few amperes? How then

is current established almost the instant a circuit is closed?

(b) The electron drift arises due to the force experienced by electrons
in the electric field inside the conductor. But force should cause

acceleration. Why then do the electrons acquire a steady average

drift speed?
(c) If the electron drift speed is so small, and the electron’s charge is

small, how can we still obtain large amounts of current in a

conductor?
(d) When electrons drift in a metal from lower to higher potential,

does it mean that all the ‘free’ electrons of the metal are moving

in the same direction?
(e) Are the paths of electrons straight lines between successive

collisions (with the positive ions of the metal) in the (i) absence of

electric field, (ii) presence of electric field?

Solution
(a) Electric field is established throughout the circuit, almost instantly

(with the speed of light) causing at every point a local electron

drift. Establishment of a current does not have to wait for electrons

from one end of the conductor travelling to the other end. However,

it does take a little while for the current to reach its steady value.
(b) Each ‘free’ electron does accelerate, increasing its drift speed until

it collides with a positive ion of the metal. It loses its drift speed

after collision but starts to accelerate and increases its drift speed
again only to suffer a collision again and so on. On the average,

therefore, electrons acquire only a drift speed.

(c) Simple, because the electron number density is enormous,
~1029 m–3.

(d) By no means. The drift velocity is superposed over the large

random velocities of electrons.
(e) In the absence of electric field, the paths are straight lines; in the

presence of electric field, the paths are, in general, curved.

3.5.1  Mobility

As we have seen, conductivity arises from mobile charge carriers. In
metals, these mobile charge carriers are electrons; in an ionised gas, they

are electrons and positive charged ions; in an electrolyte, these can be

both positive and negative ions.
An important quantity is the mobility m defined as the magnitude of

the drift velocity per unit electric field:

| |d

E
µ =

v
(3.24)

The SI unit of mobility is m2/Vs and is 104 of the mobility in practical

units (cm2/Vs). Mobility is positive. From Eq. (3.17), we have

v
d
 = 

τe E

m
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Hence,

τµ = =dv e

E m
(3.25)

where t is the average collision time for electrons.

3.6  LIMITATIONS OF OHM’S LAW

Although Ohm’s law has been found valid over a large class
of materials, there do exist materials and devices used in

electric circuits where the proportionality of V and I does not

hold. The deviations broadly are one or more of the following
types:

(a) V ceases to be proportional to I (Fig. 3.5).

(b) The relation between V and I depends on the sign of V. In
other words, if I is the current for a certain V, then reversing

the direction of V keeping its magnitude fixed, does not

produce a current of the same magnitude as I in the opposite direction
(Fig. 3.6). This happens, for example, in a diode which we will study

in Chapter 14.

(c) The relation between V and I is not unique, i.e., there is more than
one value of V for the same current I (Fig. 3.7). A material exhibiting

such behaviour is GaAs.

Materials and devices not obeying Ohm’s law in the form of Eq. (3.3)
are actually widely used in electronic circuits. In this and a few

subsequent chapters, however, we will study the electrical currents in

materials that obey Ohm’s law.

3.7  RESISTIVITY OF VARIOUS MATERIALS

The materials are classified as conductors, semiconductors and insulators

depending on their resistivities, in an increasing order of their values.

FIGURE 3.5 The dashed line

represents the linear Ohm’s

law. The solid line is the voltage
V versus current I for a good

conductor.

FIGURE 3.6 Characteristic curve

of a diode. Note the different

scales for negative and positive
values of the voltage and current.

FIGURE 3.7 Variation of current

versus voltage for GaAs.
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Metals have low resistivities in the range of 10–8 Wm to 10–6 Wm. At the

other end are insulators like ceramic, rubber and plastics having

resistivities 1018 times greater than metals or more. In between the two

are the semiconductors. These, however, have resistivities

characteristically decreasing with a rise in temperature. The resistivities

of semiconductors can be decreased by adding small amount of suitable

impurities. This last feature is exploited in use of semiconductors for

electronic devices.

3.8 TEMPERATURE DEPENDENCE OF RESISTIVITY

The resistivity of a material is found to be dependent on the temperature.

Different materials do not exhibit the same dependence on temperatures.

Over a limited range of temperatures, that is not too large, the resistivity
of a metallic conductor is approximately given by,

r
T
 = r

0
 [1 + a (T–T

0
)] (3.26)

where r
T
 is the resistivity at a temperature T and r

0
 is the same at a

reference temperature T
0
. a is called the temperature co-efficient of

resistivity, and from Eq. (3.26), the dimension of a is (Temperature)–1.

For  metals, a is positive.

The relation of Eq. (3.26) implies that a graph of r
T
 plotted against T

would be a straight line. At temperatures much lower than 0°C, the graph,
however, deviates considerably from a straight line (Fig. 3.8).

Equation (3.26) thus, can be used approximately over a limited range

of T around any reference temperature T
0
, where the graph can be

approximated as a straight line.

FIGURE 3.8
Resistivity r

T
 of

copper as a function
of temperature T.

FIGURE 3.9 Resistivity

r
T
 of nichrome as a

function of absolute

temperature T.

FIGURE 3.10
Temperature dependence

of resistivity for a typical
semiconductor.



Some materials like Nichrome (which is an alloy of nickel, iron and

chromium) exhibit a very weak dependence of resistivity with temperature

(Fig. 3.9). Manganin and constantan have similar properties. These

materials are thus widely used in wire bound standard resistors since

their resistance values would change very little with temperatures.
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Unlike metals, the resistivities of semiconductors decrease with

increasing temperatures. A typical dependence is shown in Fig. 3.10.

We can qualitatively understand the temperature dependence of

resistivity, in the light of our derivation of Eq. (3.23). From this equation,

resistivity of a material is given by

2

1 m

n e
ρ

σ τ
= = (3.27)

r thus depends inversely both on the number n of free electrons per unit

volume and on the average time t between collisions. As we increase

temperature, average speed of the electrons, which act as the carriers of

current, increases resulting in more frequent collisions. The average time

of collisions t, thus decreases with temperature.

In a metal, n is not dependent on temperature to any appreciable

extent and thus the decrease in the value of t with rise in temperature

causes r to increase as we have observed.

For insulators and semiconductors, however, n increases with

temperature. This increase more than compensates any decrease in t in

Eq.(3.23) so that for such materials, r decreases with temperature.

Example 3.3 An electric toaster uses nichrome for its heating

element. When a negligibly small current passes through it, its
resistance at room temperature (27.0 °C) is found to be 75.3 W. When

the toaster is connected to a 230 V supply, the current settles, after

a few seconds, to a steady value of 2.68 A. What is the steady
temperature of the nichrome element? The temperature coefficient

of resistance of nichrome averaged over the temperature range

involved, is 1.70 × 10–4 °C–1.

Solution  When the current through the element is very small, heating

effects can be ignored and the temperature T
1
 of the element is the

same as room temperature. When the toaster is connected to the
supply, its initial current will be slightly higher than its steady value

of 2.68 A. But due to heating effect of the current, the temperature

will rise. This will cause an increase in resistance and a slight
decrease in current. In a few seconds, a steady state will be reached

when temperature will rise no further, and both the resistance of the

element and the current drawn will achieve steady values. The
resistance R

2
 at the steady temperature T

2
 is

R
2
 

230 V
85.8

2.68 A
= = Ω

Using the relation

R
2
 = R

1
 [1 + a (T

2
 – T

1
)]

with a = 1.70 × 10–4 °C–1, we get

T
2
 – T

1 –4

(85.8 – 75.3)

(75.3) 1.70 10
=

× ×
  = 820 °C

that is,  T
2 

= (820 + 27.0) °C = 847 °C

Thus, the steady temperature of the heating element (when heating

effect due to the current equals heat loss to the surroundings) is

847 °C.
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Example 3.4 The resistance of the platinum wire of a platinum
resistance thermometer at the ice point is 5 W and at steam point is

5.23 W. When the thermometer is inserted in a hot bath, the resistance

of the platinum wire is 5.795 W. Calculate the temperature of the
bath.

Solution R
0
 = 5 W, R

100
 = 5.23 W and R

t
 = 5.795 W

Now,
0

0

100 0

100, (1 )t
t

R R
t R R t

R R
α−

= × = +
−

5.795 5
100

5.23 5

−
= ×

−

=
0.795

100
0.23

×  = 345.65 °C

3.9  ELECTRICAL ENERGY, POWER

Consider a conductor with end points A and B, in which a current I is
flowing from A to B. The electric potential at A and B are denoted by V (A)

and V (B) respectively. Since current is flowing from A to B, V (A) > V (B)

and the potential difference across  AB is V = V(A) – V(B) > 0.
In a time interval Dt, an amount of charge DQ = I Dt travels from A to

B. The potential energy of the charge at A, by definition, was Q V (A) and
similarly at B, it is Q V(B). Thus, change in its potential energy DU

pot
 is

DU
pot

 = Final potential energy – Initial potential energy

         = DQ[(V (B) – V (A)] = –DQ V
         = –I VDt < 0 (3.28)

If charges moved without collisions through the conductor, their

kinetic energy would also change so that the total energy is unchanged.
Conservation of total energy would then imply that,

DK =  –DU
pot

(3.29)

that is,

DK = I VDt > 0 (3.30)

Thus, in case charges were moving freely through the conductor under

the action of electric field, their kinetic energy would increase as they
move. We have, however, seen earlier that on the average, charge carriers

do not move with acceleration but with a steady drift velocity. This is

because of the collisions with ions and atoms during transit. During
collisions, the energy gained by the charges thus is shared with the atoms.

The atoms vibrate more vigorously, i.e., the conductor heats up. Thus,

in an actual conductor, an amount of energy dissipated as heat in the
conductor during the time interval Dt is,

DW = I VDt (3.31)

The energy dissipated per unit time is the power dissipated
P = DW/Dt  and we have,

P = I V (3.32)
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Using Ohm’s law V = IR, we get

P = I 2 R = V 2/R (3.33)

as the power loss (“ohmic loss”) in a conductor of resistance R carrying a
current I. It is this power which heats up, for example, the coil of an

electric bulb to incandescence, radiating out heat and light.

Where does the power come from? As we have
reasoned before, we need an external source to keep

a steady current through the conductor. It is clearly

this source which must supply this power. In the
simple circuit shown with a cell (Fig.3.11), it is the

chemical energy of the cell which supplies this power

for as long as it can.
The expressions for power, Eqs. (3.32) and (3.33),

show the dependence of the power dissipated in a

resistor R on the current through it and the voltage
across it.

Equation (3.33) has an important application to

power transmission. Electrical power is transmitted
from power stations to homes and factories, which

may be hundreds of miles away, via transmission

cables. One obviously wants to minimise the power
loss in the transmission cables connecting the power stations to homes

and factories. We shall  see now how this can be achieved. Consider a

device R, to which a power P is to be delivered via transmission cables
having a resistance R

c
 to be dissipated by it finally. If V is the voltage

across R and I the current through it, then

P = V I (3.34)
The connecting wires from the power station to the device has a finite

resistance R
c
. The power dissipated in the connecting wires, which is

wasted is P
c
  with

P
c
 = I 2 R

c

   
2

2

cP R

V
= (3.35)

from Eq. (3.32). Thus, to drive a device of power P, the power wasted in the

connecting wires is inversely proportional to V 2. The  transmission cables
from power stations are hundreds of miles long and their resistance R

c
 is

considerable. To reduce P
c
, these wires carry current at enormous values

of V and this is the reason for the high voltage danger signs on transmission
lines — a common sight as we move away from populated areas. Using

electricity at such voltages is not safe and hence at the other end, a device

called a transformer lowers the voltage to a value suitable for use.

3.10 CELLS, EMF, INTERNAL RESISTANCE

We have already mentioned that a simple device to maintain a steady
current in an electric circuit is the electrolytic cell. Basically a cell has

two electrodes, called the positive (P) and the negative (N), as shown in

FIGURE 3.11 Heat is produced in the

resistor R which is connected across
the terminals of a cell. The energy

dissipated in the resistor R comes from

the chemical energy of the electrolyte.

2024-25



Physics

94

Fig. 3.12. They are immersed in an electrolytic solution. Dipped in
the solution, the electrodes exchange charges with the electrolyte.

The positive electrode has a potential difference V
+
 (V

+
 > 0) between

itself and the electrolyte solution immediately adjacent to it marked
A in the figure. Similarly, the negative electrode develops a negative

potential  – (V
–
 ) (V

–
 ≥  0) relative to the electrolyte adjacent to it,

marked as B in the figure. When there is no current, the electrolyte
has the same potential throughout, so that the potential difference
between P and N is V

+
 – (–V

–
) = V

+
 + V

–
 . This difference is called the

electromotive force (emf) of the cell and is denoted by e. Thus

e = V
+
+V

–
 > 

 
0 (3.36)

Note that e is, actually, a potential difference and not a force. The

name emf, however, is used because of historical reasons, and was
given at a time when the phenomenon was not understood properly.

To understand the significance of e, consider a resistor R

connected across the cell (Fig. 3.12). A current I flows across R
from C to D. As explained before, a steady current is maintained
because current flows from N to P through the electrolyte. Clearly,

across the electrolyte the same current flows through the electrolyte
but from N to P, whereas through R, it flows from P to N.

The electrolyte through which a current flows has a finite

resistance r, called the internal resistance. Consider first the
situation when R is infinite so that I = V/R = 0, where V is the
potential difference between P and N. Now,

V = Potential difference between P and A
       + Potential difference between A and B
       + Potential  difference between B and N

   = e (3.37)
Thus, emf e is the potential difference between the positive and
negative electrodes in an open circuit, i.e., when no current is

flowing through the cell.
If however R is finite, I is not zero. In that case the potential difference

between P and N is

V = V
+
+ V

–
 – I r

   = e – I r (3.38)

Note the negative sign in the expression (I r ) for the potential difference

between A and B. This is because the current I flows from B to A in the

electrolyte.

In  practical calculations, internal resistances of cells in the circuit
may be neglected when the  current I is such that e >> I r. The actual

values of the internal resistances of cells vary from cell to cell. The internal

resistance of dry cells, however, is much higher than the common

electrolytic cells.
We also observe that since V is the potential difference across R, we

have from Ohm’s law

V = I  R (3.39)

Combining Eqs. (3.38) and (3.39), we get

FIGURE 3.12 (a) Sketch of

an electrolyte cell with
positive terminal P and

negative terminal N. The

gap between the electrodes
is exaggerated for clarity. A

and B are points in the

electrolyte typically close to
P and N. (b) the symbol for
a cell, + referring to P and

– referring to the N
electrode. Electrical

connections to the cell are

made at P and N.
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I  R   =  e – I  r

Or, I
R r

=
+
ε

(3.40)

The maximum current that can be drawn from a cell is for R = 0 and

it is I
max

 = e/r. However, in most cells the maximum allowed current is
much lower than this to prevent permanent damage to the cell.

3.11  CELLS IN SERIES AND IN PARALLEL

Like resistors, cells can be combined together in an electric circuit. And

like resistors, one can, for calculating currents and voltages in a circuit,
replace a combination of cells by an equivalent cell.

FIGURE 3.13 Two cells of emf’s e
1
 and e

2
 in the series. r

1
, r

2
 are their

internal resistances. For connections across A and C, the combination

can be considered as one cell of emf e
eq

 and an internal resistance r
eq

.

Consider first  two cells in series (Fig. 3.13), where one terminal of the

two cells is joined together leaving the other terminal in either cell free.
e

1
, e

2
 are the emf’s of the two cells and r

1
, r

2
 their internal resistances,

respectively.

Let V (A), V (B), V (C) be the potentials at points A, B and C shown in

Fig. 3.13. Then V (A) – V (B) is the potential difference between the positive

and negative terminals of the first cell. We have already calculated it in

Eq. (3.38) and hence,

V V V I rAB A B≡ =( ) � ( ) �ε1 1 (3.41)

Similarly,

V V V I rBC B C≡ =( ) � ( ) �ε2 2 (3.42)

Hence, the potential difference between the terminals A and C of the
combination is

( ) ( ) ( ) ( )AC (A) – (C) A – B B – CV V V V V V V≡ = +        

       ( ) ( )1 2 1 2– I r rε ε= + + (3.43)

If we wish to replace the combination by a single cell between A and

C of emf e
eq

 and internal resistance r
eq

, we would have

V
AC

 = e
eq

– I r
eq

(3.44)

Comparing the last two equations, we get

  e
eq

 = e
1
 + e

2
(3.45)

and  r
eq

 = r
1
 + r

2
(3.46)

In Fig.3.13, we had connected the negative electrode of the first to the

positive electrode of the second. If instead we connect the two negatives,
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Eq. (3.42) would change to V
BC

 = –e
2
–Ir

2
 and we will get

e
eq

 = e
1
 – e

2
         (e

1
 > e

2
) (3.47)

The rule for series combination clearly can be extended to any number
of cells:
(i) The equivalent emf of a series combination of n cells is just the sum of

their individual emf’s, and
(ii) The equivalent internal resistance of a series combination of n cells is

just the sum of their internal resistances.

This is so, when the current leaves each cell from the positive
electrode. If in the combination, the current leaves any cell from
the negative electrode, the emf of the cell enters the expression

for e
eq

 with a negative sign, as in Eq. (3.47).
Next, consider a parallel combination of the cells (Fig. 3.14).

I
1
 and I

2
 are the currents leaving the positive electrodes of the

cells. At the point B
1
, I

1
 and I

2
 flow in whereas the current I flows

out. Since as much charge flows in as out, we have

I = I
1
 + I

2
(3.48)

Let V (B
1
) and V (B

2
) be the potentials at B

1
 and B

2
, respectively.

Then, considering the first cell, the potential difference across its
terminals is V (B

1
) – V (B

2
). Hence, from Eq. (3.38)

( ) ( )1 2 1 1 1– –V V B V B I rε≡ = (3.49)

Points B
1
 and B

2
 are connected exactly similarly to the second

cell. Hence considering the second cell, we also have

( ) ( )1 2 2 2 2– –V V B V B I rε≡ = (3.50)

Combining the last three equations

1 2    I I I= +

    = + = +






+






ε ε ε ε1

1

2

2

1

1

2

2 1 2

1 1– –
–

V

r

V

r r r
V

r r
(3.51)

Hence, V is given by,

1 2 2 1 1 2

1 2 1 2

–
r r r r

V I
r r r r

ε ε+
=

+ + (3.52)

If we want to replace the combination by a single cell, between B
1
 and

B
2
, of emf e

eq
 and internal resistance r

eq
, we would have

V = e
eq 

– I r
eq

(3.53)

The last two equations should be the same and hence

1 2 2 1

1 2

eq

r r

r r

ε εε +
=

+ (3.54)

1 2

1 2

eq

r r
r

r r
=

+ (3.55)

We can put these equations in a simpler way,

FIGURE 3.14 Two cells in
parallel. For connections

across A and C, the

combination can be
replaced by one cell of emf

e
eq

 and internal resistances

r
eq

 whose values are given in
Eqs. (3.54) and (3.55).
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1 2

1 1 1

eqr r r
= + (3.56)

1 2

1 2

eq

eqr r r

ε ε ε= + (3.57)

In Fig. (3.14), we had joined the positive terminals

together and similarly the two negative ones, so that the
currents I

1
, I

2
 flow out of positive terminals. If the negative

terminal of the second is connected to positive terminal

of the first, Eqs. (3.56) and (3.57) would still be valid with
e

 2
 ® –e

2

Equations (3.56) and (3.57) can be extended easily.

If there are n cells of emf e
1
, . . . e

n
 and of internal

resistances r
1
,... r

n
 respectively, connected in parallel, the

combination is equivalent to a single cell of emf e
eq

 and

internal resistance r
eq

, such that

1 1 1

1r r req n

= + +... (3.58)

ε ε εeq

eq

n

nr r r
= + +1

1

... (3.59)

3.12  KIRCHHOFF’S RULES

Electric circuits generally consist of a number of resistors
and cells interconnected sometimes in a complicated way.

The formulae we have derived earlier for series and parallel combinations
of resistors are not always sufficient to determine all the currents and
potential differences in the circuit. Two rules, called Kirchhoff’s rules,

are very useful for analysis of electric circuits.
Given a circuit, we start by labelling currents in each resistor by a

symbol, say I, and a directed arrow to indicate that a current I flows

along the resistor in the direction indicated. If ultimately I is determined
to be positive, the actual current in the resistor is in the direction of the
arrow. If I turns out to be negative, the current actually flows in a direction

opposite to the arrow. Similarly, for each source (i.e., cell or some other
source of electrical power) the positive and negative electrodes are labelled,
as well as, a directed arrow with a symbol for the current flowing through

the cell. This will tell us the potential difference, V = V (P) – V (N) = e – I r
[Eq. (3.38) between the positive terminal P and the negative terminal N; I
here is the current flowing from N to P through the cell]. If, while labelling

the current I through the cell one goes from P to N, then of course
V = e + I r (3.60)

Having clarified labelling, we now state the rules and the proof:
(a) Junction rule: At any junction, the sum of the currents entering

the junction is equal to the sum of currents leaving the junction

(Fig. 3.15).

Gustav Robert Kirchhoff

(1824 – 1887) German
physicist, professor at
Heidelberg and at

Berlin. Mainly known for
his development of
spectroscopy, he also

made many important
contributions to mathe-
matical physics, among

them, his first and
second rules for circuits.
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This applies equally well if instead of a junction of
several lines, we consider a point in a line.

The proof of this rule follows from the fact that
when currents are steady, there is no accumulation
of charges at any junction or at any point in a line.

Thus, the total current flowing in, (which is the rate
at which charge flows into the junction), must equal
the total current flowing out.

(b) Loop rule: The algebraic sum of changes in

potential around any closed loop involving

resistors and cells in the loop is zero

(Fig. 3.15).
This rule is also obvious, since electric potential is
dependent on the location of the point. Thus

starting with any point if we come back to the same
point, the total change must be zero. In a closed
loop, we do come back to the starting point and

hence the rule.

FIGURE 3.15 At junction a the current
leaving is I

1
 + I

2
 and current entering is I

3
.

The junction rule says I
3
 = I

1
 + I

2
. At point

h current entering is I
1
. There is only one

current leaving h and by junction rule
that will also be I

1
. For the loops ‘ahdcba’

and ‘ahdefga’, the loop rules give –30I
1
 –

41 I
3
 + 45 = 0 and –30I

1
 + 21 I

2
 – 80 = 0.

Example 3.5 A battery of 10 V and negligible internal resistance is

connected across the diagonally opposite corners of a cubical network
consisting of 12 resistors each of resistance 1 W (Fig. 3.16). Determine
the equivalent resistance of the network and the current along each

edge of the cube.

Z

FIGURE 3.16
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Solution  The network is not reducible to a simple series and parallel
combinations of resistors. There is, however, a clear symmetry in the

problem which we can exploit to obtain the equivalent resistance of
the network.
The paths AA¢, AD and AB are obviously symmetrically placed in the

network. Thus, the current in each must be the same, say, I. Further,
at the corners A¢, B and D, the incoming current I must split equally
into the two outgoing branches. In this manner, the current in all

the 12 edges of the cube are easily written down in terms of I, using
Kirchhoff’s first rule and the symmetry in the problem.
Next take a closed loop, say, ABCC¢EA, and apply Kirchhoff’s second

rule:
–IR – (1/2)IR – IR + e = 0

where R is the resistance of each edge and e the emf of battery. Thus,

e = 
5

2
I R

The equivalent resistance R
eq

 of the network is

5

3 6
eqR R

I

ε= =

For R = 1 W, R
eq

 = (5/6) W and for e = 10 V, the total current (= 3I ) in

the network is
3I = 10 V/(5/6) W = 12 A, i.e., I = 4 A

The current flowing in each edge can now be read off from the
Fig. 3.16.

It should be noted that because of the symmetry of the network, the
great power of Kirchhoff’s rules has not been very apparent in Example 3.5.

In a general network, there will be no such simplification due to symmetry,
and only by application of Kirchhoff’s rules to junctions and closed loops
(as many as necessary to solve the unknowns in the network) can we

handle the problem. This will be illustrated in Example 3.6.

Example 3.6 Determine the current in each branch of the network
shown in Fig. 3.17.

FIGURE 3.17
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Solution  Each branch of the network is assigned an unknown current
to be determined by the application of Kirchhoff’s rules. To reduce
the number of unknowns at the outset, the first rule of Kirchhoff is

used at every junction to assign the unknown current in each branch.
We then have three unknowns I

1
, I

2
 and I

3
 which can be found by

applying the second rule of Kirchhoff to three different closed loops.

Kirchhoff’s second rule for the closed loop ADCA gives,

10 – 4(I
1
– I

2
) + 2(I

2
 + I

3
 – I

1
) – I

1
 = 0 [3.61(a)]

that is, 7I
1
– 6I

2
 – 2I

3
 = 10

For the closed loop ABCA, we get

10 – 4I
2
– 2 (I

2
 + I

3
) – I

1
 = 0

that is, I
1
 + 6I

2
 + 2I

3
 =10 [3.61(b)]

For the closed loop BCDEB, we get

5 – 2 (I
2
 + I

3
) – 2 (I

2
 + I

3
 – I

1
) = 0

that is, 2I
1
 – 4I

2
 – 4I

3
 = –5 [3.61(c)]

Equations (3.61 a, b, c) are three simultaneous equations in three
unknowns. These can be solved by the usual method to give

I
1
 = 2.5A,   I

2
 = 

5

8
 A,   I

3
 = 

7
1

8
  A

The currents in the various branches of the network are

AB : 
5

8
 A,   CA : 

1
2

2
 A,   DEB : 

7
1

8
  A

AD : 
7

1
8

 A,   CD : 0 A,   BC : 
1

2
2

 A

It is easily verified that Kirchhoff’s second rule applied to the
remaining closed loops does not provide any additional independent
equation, that is, the above values of currents satisfy the second

rule for every closed loop of the network. For example, the total voltage
drop over the closed loop BADEB

5
5

8
4

15

8
4V V V+ ×



 − ×





equal to zero, as required by Kirchhoff’s second rule.

3.13  WHEATSTONE BRIDGE

As an application of Kirchhoff’s rules consider the circuit shown in

Fig. 3.18, which is called the Wheatstone bridge. The bridge has

four resistors R
1
, R

2
, R

3
 and R

4
. Across one pair of diagonally opposite

points (A and C in the figure) a source is connected. This (i.e., AC) is

called the battery arm. Between the other two vertices, B and D, a

galvanometer G (which is a device to detect currents) is connected. This

line, shown as BD in the figure, is called the galvanometer arm.
For simplicity, we assume that the cell has no internal resistance. In

general there will be currents flowing across all the resistors as well as a
current I

g
 through G. Of special interest, is the case of a balanced bridge

where the resistors are such that I
g
 = 0. We can easily get the balance

condition, such that there is no current through G. In this case, the
Kirchhoff’s junction rule applied to junctions D and B (see the figure)
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FIGURE 3.18
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immediately gives us the relations I
1
 = I

3
 and I

2
 = I

4
. Next, we apply

Kirchhoff’s loop rule to closed loops ADBA and CBDC. The first
loop gives

–I
1
 R

1
 + 0 + I

2
 R

2
 = 0        (I

g
 = 0)   (3.62)

and the second loop gives, upon using I
3
 = I

1
, I

4
 = I

2

I
2
 R

4
 + 0 – I

1
 R

3
 = 0         (3.63)

From Eq. (3.62), we obtain,

1 2

2 1

I R

I R
=

whereas from Eq. (3.63), we obtain,

1 4

2 3

I R

I R
=

Hence, we obtain the condition

2 4

1 3

R R

R R
= [3.64(a)]

 This last equation relating the four resistors is called the balance

condition for the galvanometer to give zero or null deflection.
The Wheatstone bridge and its balance condition provide a practical

method for determination of an unknown resistance. Let us suppose we
have an unknown resistance, which we insert in the fourth arm; R

4
 is

thus not known. Keeping known resistances R
1
 and R

2
 in the first and

second arm of the bridge, we go on varying R
3
 till the galvanometer shows

a null deflection. The bridge then is balanced, and from the balance
condition the value of the unknown resistance R

4
 is given by,

2
4 3

1

R
R R

R
= [3.64(b)]

A practical device using this principle is called the meter bridge.

Example 3.7 The four arms of a Wheatstone bridge (Fig. 3.19) have
the following resistances:

AB = 100W, BC = 10W, CD = 5W, and DA = 60W.

FIGURE 3.19
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 A galvanometer of 15W resistance is connected across BD. Calculate
the current through the galvanometer when a potential difference of
10 V is maintained across AC.

Solution  Considering the mesh BADB, we have

100I
1
 + 15I

g
 – 60I

2
 = 0

or   20I
1
 + 3I

g
 – 12I

2
= 0 [3.65(a)]

Considering the mesh BCDB, we have

10 (I
1
 – I

g
) – 15I

g
 – 5 (I

2
 + I

g
) = 0

10I
1
 – 30I

g
 –5I

2
 = 0

2I
1
 – 6I

g
 – I

2
 = 0 [3.65(b)]

Considering the mesh ADCEA,

60I
2
 + 5 (I

2
 + I

g
) = 10

65I
2
 + 5I

g
 = 10

13I
2
 + I

g
 = 2 [3.65(c)]

Multiplying Eq. (3.65b) by 10

20I
1
 – 60I

g
 – 10I

2
 = 0 [3.65(d)]

From Eqs. (3.65d) and (3.65a) we have

63I
g
 – 2I

2
 = 0

I
2
 = 31.5I

g
[3.65(e)]

Substituting the value of I
2
 into Eq. [3.65(c)], we get

13 (31.5I
g
 ) + I

g
 = 2

410.5 I
g
 = 2

I
g
 = 4.87 mA.

SUMMARY

1. Current through a given area of a conductor is the net charge passing
per unit time through the area.

2. To maintain a steady current, we must have a closed circuit in which

an external agency moves electric charge from lower to higher potential

energy. The work done per unit charge by the source in taking the

charge from lower to higher potential energy (i.e., from one terminal

of the source to the other) is called the electromotive force, or emf, of
the source. Note that the emf is not a force; it is the voltage difference

between the two terminals of a source in open circuit.

3. Ohm’s law: The electric current I flowing through a substance is

proportional to the voltage V across its ends, i.e., V µ I or V = RI,

where R is called the resistance of the substance. The unit of resistance

is ohm: 1W = 1 V A–1.
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4. The resistance R of a conductor depends on its length l and

cross-sectional area A through the relation,

l
R

A

ρ
=

where r, called resistivity is a property of the material and depends on

temperature and pressure.

5. Electrical resistivity of substances varies over a very wide range. Metals
have low resistivity, in the range of 10–8 W m to 10–6 W m. Insulators

like glass and rubber have 1022 to 1024 times greater resistivity.

Semiconductors like Si and Ge lie roughly in the middle range of
resistivity on a logarithmic scale.

6. In most substances, the carriers of current are electrons; in some

cases, for example, ionic crystals and electrolytic liquids, positive and
negative ions carry the electric current.

7. Current density j gives the amount of charge flowing per second per

unit area normal to the flow,

j = nq v
d

where n is the number density (number per unit volume) of charge

carriers each of charge q, and v
d
 is the drift velocity of the charge

carriers. For electrons q = – e. If j is normal to a cross-sectional area

A and is constant over the area, the magnitude of the current I through

the area is nev
d
 A.

8. Using E = V/l, I = nev
d
 A, and Ohm’s law, one obtains

2

d

eE ne
v

m m
ρ=

The proportionality between the force eE on the electrons in a metal

due to the external field E and the drift velocity v
d
 (not acceleration)

can be understood, if we assume that the electrons suffer collisions
with ions in the metal, which deflect them randomly. If such collisions

occur on an average at a time interval t,

v
d
 = at = eEt/m

where a is the acceleration of the electron. This gives

2

m

ne
ρ

τ
=

9. In the temperature range in which resistivity increases linearly with

temperature, the temperature coefficient of resistivity a is defined as

the fractional increase in resistivity per unit increase in temperature.

10. Ohm’s law is obeyed by many substances, but it is not a fundamental

law of nature. It fails if

(a) V depends on I non-linearly.
(b) the relation between V and I depends on the sign of V for the same

absolute value of V.

(c) The relation between V and I is non-unique.
An example of (a) is when r increases with I (even if temperature is

kept fixed). A rectifier combines features (a) and (b). GaAs shows the

feature (c).

11. When a source of emf e is connected to an external resistance R, the

voltage V
ext

 across R is given by

V
ext

 = IR = R
R r

ε
+

where r is the internal resistance of the source.
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Physical Quantity Symbol Dimensions Unit Remark

Electric current I [A] A SI base unit

Charge Q, q [T A] C

Voltage, Electric V [M L
2
 T

–3 
A

–1
] V Work/charge

potential difference

Electromotive force e [M L
2
 T

–3 
A

–1
] V Work/charge

Resistance R [M L
2 
T

–3 
A

–2
] W R = V/I

Resistivity r [M L
3 
T

–3 
A

–2
] W m R = rl/A

Electrical s [M
–1

 L
–3

 T
3 
A

2
] S s = 1/r

conductivity

Electric field E [M L T
–3

 A
–1

] V m
–1 Electric force

charge

Drift speed v
d

[L T
–1

] m s
–1

vd

e E

m
=

τ

Relaxation time t [T] s

Current density j [L
–2

 A] A m
–2

current/area

Mobility m [M L
3 
T

–4 
A

–1
] m

2 
V

–1
s

–1 /dv E

12. Kirchhoff’s Rules –

(a) Junction Rule: At any junction of circuit elements, the sum of

currents entering the junction must equal the sum of currents

leaving it.

(b) Loop Rule: The algebraic sum of changes in potential around any

closed loop must be zero.

13. The Wheatstone bridge is an arrangement of four resistances – R
1
, R

2
,

R
3
, R

4
 as shown in the text. The null-point condition is given by

31

2 4

RR

R R
=

using which the value of one resistance can be determined, knowing

the other three resistances.

POINTS TO PONDER

1. Current is a scalar although we represent current with an arrow.

Currents do not obey the  law of vector addition. That current is a
scalar also follows from it’s  definition. The current I through an area

of cross-section is given by the scalar product of two vectors:

I =  j . DS

where j and DS are vectors.
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2. Refer to V-I curves of a resistor and a diode as drawn in the text. A
resistor obeys Ohm’s law while a diode does not. The assertion that
V = IR is a statement of Ohm’s law is not true. This equation defines
resistance and it may be applied to all conducting devices whether
they obey Ohm’s law or not. The Ohm’s law asserts that the plot of I
versus V is linear i.e., R is independent of V.

Equation E = ρ j leads to another statement of Ohm’s law, i.e., a
conducting material obeys Ohm’s law when the resistivity of the
material does not depend on the magnitude and direction of applied
electric field.

3. Homogeneous conductors like silver or semiconductors like pure
germanium or germanium containing impurities obey Ohm’s law within
some range of electric field values. If the field becomes too strong,
there are departures from Ohm’s law in all cases.

4. Motion of conduction electrons in electric field E is the sum of (i)
motion due to random collisions and (ii) that due to E. The motion
due to random collisions averages to zero and does not contribute to
v

d
 (Chapter 10, Textbook of Class XI). v

d
 , thus is only due to applied

electric field on the electron.

5. The relation j = ρ v should be applied to each type of charge carriers
separately. In a conducting wire, the total current and charge density
arises from both positive and negative charges:

j = ρ
+
 v

+
 + ρ

–
 v

–

ρρρρρ = ρ
+
 + ρ

–

Now in a neutral wire carrying electric current,

ρρρρρ
+
 = – ρ

–

Further, v+ ~ 0 which gives

ρρρρρ = 0

j = ρ
–
 v

Thus, the relation j = ρ v does not apply to the total current charge
density.

6. Kirchhoff’s junction rule is based on conservation of charge and the
outgoing currents add up and are equal to incoming current at a
junction. Bending or reorienting the wire does not change the validity
of Kirchhoff’s junction rule.

EXERCISES

3.1 The storage battery of a car has an emf of 12 V. If the internal
resistance of the battery is 0.4 Ω, what is the maximum current
that can be drawn from the battery?

3.2 A battery of emf 10 V and internal resistance 3 Ω is connected to a
resistor. If the current in the circuit is 0.5 A, what is the resistance
of the resistor? What is the terminal voltage of the battery when the
circuit is closed?

3.3 At room temperature (27.0 °C) the resistance of a heating element
is 100 Ω. What is the temperature of the element if the resistance is
found to be 117 Ω, given that the temperature coefficient of the
material of the resistor is 1.70 × 10–4 °C–1.
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3.4 A negligibly small current is passed through a wire of length 15 m
and uniform cross-section 6.0 × 10–7 m2, and its resistance is
measured to be 5.0 W. What is the resistivity of the material at the
temperature of the experiment?

3.5 A silver wire has a resistance of 2.1 W at 27.5 °C, and a resistance
of 2.7 W at 100 °C. Determine the temperature coefficient of
resistivity of silver.

3.6 A heating element using nichrome connected to a 230 V supply
draws an initial current of 3.2 A which settles after a few seconds to
a steady value of 2.8 A. What is the steady temperature of the heating

element if the room temperature is 27.0 °C? Temperature coefficient
of resistance of nichrome averaged over the temperature range
involved is 1.70 × 10–4 °C–1.

3.7 Determine the current in each branch of the network shown in
Fig. 3.20:

FIGURE 3.20

3.8 A storage battery of emf 8.0 V and internal resistance 0.5 W is being
charged by a 120 V dc supply using a series resistor of 15.5 W. What
is the terminal voltage of the battery during charging? What is the
purpose of having a series resistor in the charging circuit?

3.9 The number density of  free electrons in a copper conductor
estimated in Example 3.1 is 8.5 × 1028 m–3. How long does an electron
take to drift from one end of a wire 3.0 m long to its other end? The
area of cross-section of the wire is 2.0 × 10–6 m2 and it is carrying a
current of 3.0 A.
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4.1  INTRODUCTION

Both Electricity and Magnetism have been known for more than 2000

years. However, it was only about 200 years ago, in 1820, that it was

realised that they were intimately related. During a lecture demonstration
in the summer of 1820, Danish physicist Hans Christian Oersted noticed

that a current in a straight wire caused a noticeable deflection in a nearby

magnetic compass needle. He investigated this phenomenon. He found
that the alignment of the needle is tangential to an imaginary circle which

has the straight wire as its centre and has its plane perpendicular to the

wire. This situation is depicted in Fig.4.1(a). It is noticeable when the
current is large and the needle sufficiently close to the wire so that the

earth’s magnetic field may be ignored. Reversing the direction of the

current reverses the orientation of the needle [Fig. 4.1(b)]. The deflection
increases on increasing the current or bringing the needle closer to the

wire. Iron filings sprinkled around the wire arrange themselves in

concentric circles with the wire as the centre [Fig. 4.1(c)]. Oersted
concluded that moving charges or currents produced a magnetic field

in the surrounding space.

Following this, there was intense experimentation. In 1864, the laws
obeyed by electricity and magnetism were unified and formulated by

Chapter Four

MOVING CHARGES

AND MAGNETISM
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James Maxwell who then realised that light was electromagnetic waves.

Radio waves were discovered by Hertz, and produced by  J.C.Bose and

G. Marconi by the end of the 19th century. A  remarkable scientific and
technological progress took place in the 20th century. This was due to

our increased understanding of electromagnetism and the invention of

devices for production, amplification, transmission and detection of
electromagnetic waves.

In this chapter, we will see how magnetic field exerts

forces on moving charged particles, like electrons, protons,

and current-carrying wires. We shall also learn how

currents produce magnetic fields. We shall see how

particles can be accelerated to very high energies in a

cyclotron. We shall study how currents and voltages are

detected by a galvanometer.

In this and subsequent Chapter on magnetism,
we adopt the following convention: A current or a

field (electric or magnetic) emerging out of the plane of the

paper is depicted by a dot (¤). A current or a field going
into the plane of the paper is depicted by a cross ( )*.
Figures. 4.1(a) and 4.1(b) correspond to these two

situations, respectively.

4.2  MAGNETIC FORCE

4.2.1  Sources and fields

Before we introduce the concept of a magnetic field B, we

shall recapitulate what we have learnt in Chapter 1 about

the electric field E. We have seen that the interaction

between two charges can be considered in two stages.

The charge Q, the source of the field, produces an electric

field E, where

FIGURE 4.1 The magnetic field due to a straight long current-carrying
wire. The wire is perpendicular to the plane of the paper. A ring of

compass needles surrounds the wire. The orientation of the needles is

shown when (a) the current emerges out of the plane of the paper,
(b) the current moves into the plane of the paper. (c) The arrangement of

iron filings around the wire. The darkened ends of the needle represent

north poles. The effect of the earth’s magnetic field is neglected.

* A dot appears like the tip of an arrow pointed at you, a cross is like the feathered

tail of an arrow moving away from you.

Hans Christian Oersted
(1777–1851) Danish

physicist and chemist,
professor at Copenhagen.

He observed that a

compass needle suffers a
deflection when placed

near a wire carrying an

electric current. This
discovery gave the first

empirical evidence of a

connection between electric
and magnetic phenomena.
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E = Q r̂ / (4pe
0
)r2 (4.1)

where r̂  is unit vector along r,  and  the field E is a vector
field. A charge q interacts with this field and experiences

a force F given by

F  =  q  E   = q Q r̂   / (4pe
0
) r 2 (4.2)

As pointed out in the Chapter 1, the field E is not just

an artefact but has a physical role. It can  convey  energy

and momentum and is not established instantaneously

but takes finite time to propagate. The concept of a field

was specially stressed by Faraday  and was incorporated

by Maxwell in his unification of electricity and magnetism.

In addition to depending on each point in space, it can

also vary with time, i.e., be a function of time.  In our

discussions in this chapter, we will assume that the fields

do not change with time.

The field at a particular point can be due to one or

more charges. If there are more charges the fields add

vectorially. You have already learnt in Chapter 1 that this

is called the principle of superposition. Once the field is

known, the force on a test charge is given by Eq. (4.2).

Just as static charges produce an electric field, the

currents or moving charges produce (in addition) a

magnetic field, denoted by B (r), again a vector field. It

has several basic properties identical to the electric field.

It is defined at each point in space (and can in addition

depend on time). Experimentally, it is found to obey the

principle of superposition: the magnetic field of several

sources is the vector addition of magnetic field of each

individual source.

4.2.2  Magnetic Field,  Lorentz  Force

Let us suppose that there is  a point charge q (moving

with a velocity v and, located at r at a given time t ) in
presence of both the electric field E (r) and the magnetic
field B (r).  The force on an electric charge q due to both

of them can be written as

F   = q [ E (r) +  v × B (r)] º F
electric

 +F
magnetic

(4.3)

This force was given first  by H.A. Lorentz based on the extensive

experiments of Ampere and others. It is called the Lorentz force. You
have already studied in detail the force due to the electric field. If we
look at the interaction with the magnetic field, we find the following

features.
(i) It depends on q, v and B (charge of the particle, the velocity and the

magnetic field). Force on a negative charge is opposite to that on a

positive charge.

(ii) The magnetic force q [ v × B ] includes a vector product of velocity
and magnetic field. The vector product makes the force due to magnetic
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Hendrik Antoon Lorentz
(1853 – 1928) Dutch
theoretical physicist,

professor at Leiden. He
investigated the
relationship between

electricity, magnetism, and
mechanics. In order to
explain the observed effect

of magnetic fields on
emitters of light (Zeeman
effect), he postulated the
existence of electric charges

in the atom, for which he
was awarded the Nobel Prize
in 1902. He derived a set of

transformation equations
(known after him, as
Lorentz transformation

equations) by some tangled
mathematical arguments,
but he was not aware that

these equations hinge on a
new concept of space and
time.
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field vanish (become zero) if  velocity and magnetic field are parallel
or anti-parallel. The force acts in a (sideways) direction perpendicular

to both the velocity and the magnetic field. Its
direction  is given by the screw rule or right hand
rule  for vector (or cross) product as illustrated
in Fig. 4.2.
(iii) The magnetic force is zero if  charge is not

moving (as then |v|= 0).  Only a moving
charge feels the magnetic force.

The expression for the magnetic force helps
us to define the unit of the magnetic field, if one
takes q, F and v, all to be unity in the force
equation F = q [ v × B] =q v B sin q n̂ ,  where q is
the angle between v and B [see  Fig. 4.2 (a)]. The
magnitude of magnetic field B is 1 SI unit, when
the force acting on a unit charge (1 C), moving
perpendicular to B with a speed 1m/s, is one
newton.
Dimensionally, we have [B] = [F/qv] and the unit

of B are Newton second / (coulomb metre).  This unit is called tesla (T )
named after Nikola Tesla (1856 – 1943). Tesla is a rather large unit. A
smaller  unit (non-SI) called gauss (=10–4 tesla) is also often used. The
earth’s magnetic field is about 3.6 × 10–5 T.

4.2.3  Magnetic force on a current-carrying conductor

We can extend the analysis for force due to magnetic field on a single
moving charge to a straight rod carrying current. Consider a rod of a
uniform cross-sectional area A and length l. We shall assume one kind
of mobile carriers as in a conductor (here electrons). Let the number
density of these mobile charge carriers in it be n. Then the total number
of mobile charge carriers in it is nlA. For a steady current I in this
conducting rod, we may assume that each mobile carrier has an average
drift velocity v

d
 (see Chapter 3). In the presence of an external magnetic

field B, the force on these carriers is:
F = (nlA)q v

d
 ´́́́́ B

where q is the value of the charge on  a carrier.  Now nq v
d
 is the current

density j and |(nq v
d
)|A is the current I (see Chapter 3 for the discussion

of current and current density). Thus,
F = [(nq v

d 
)lA] × B = [ jAl ] ´́́́́ B

   = Il ´́́́́ B (4.4)
where l is a vector of magnitude l, the length of the rod, and with a direction
identical to the current I. Note that the current I is not a vector. In the last
step leading to Eq. (4.4), we have transferred the vector sign from  j to l.

Equation (4.4) holds for a straight rod. In this equation, B is the
external magnetic field. It is not the field produced by the current-carrying
rod. If the wire has an arbitrary shape we can calculate the Lorentz force
on it by considering it as a collection of linear strips dl

j
 and summing

j
j

Id × F Bl

This summation can be converted to an integral in most cases.

FIGURE 4.2 The direction of the magnetic
force acting on a charged particle. (a) The

force on a positively charged particle with

velocity v and making an angle q with the
magnetic field B is given by the right-hand

rule. (b) A moving charged particle q is

deflected in an opposite sense to –q in the
presence of magnetic field.
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Example 4.1 A straight wire of mass 200 g and length 1.5 m carries

a current of 2 A. It is suspended in mid-air by a uniform horizontal
magnetic field B (Fig. 4.3). What is the magnitude of the magnetic
field?

FIGURE 4.3

Solution  From Eq. (4.4), we find that there is an upward force F, of
magnitude IlB,. For mid-air suspension, this must be balanced by

the force due to gravity:
m g = I lB

  
m g

B
I l

=

     
0.2 9.8

0.65 T
2 1.5

×= =
×

Note that it would have been sufficient to specify m/l, the mass per
unit length of the wire. The earth’s magnetic field is approximately
4 × 10–5 T and we have ignored it.

Example 4.2 If the magnetic field is parallel to the positive y-axis

and the charged particle is moving along the positive x-axis (Fig. 4.4),
which way would the Lorentz force be for (a) an electron (negative
charge), (b) a proton (positive charge).

FIGURE 4.4

Solution   The velocity v of particle is along the x-axis, while B, the
magnetic field is along the y-axis, so v × B is along the z-axis (screw
rule or right-hand thumb rule). So, (a) for electron it will be along –z

axis. (b) for a positive charge (proton) the force is along +z axis.

 E
X

A
M

P
L
E
 4

.2

C
h

a
rg

e
d

 p
a
rtic

le
s
 m

o
v
in

g
 in

 a
 m

a
g

n
e
tic

 fie
ld

.

In
te

ra
c
tiv

e
 d

e
m

o
n

s
tra

tio
n

:

h
ttp

://w
w
w
.p
h
ys.h

aw
aii.ed

u
/~
teb

/o
p
tics/java/p

artm
agn

/in
d
ex.h

tm
l

2024-25



Physics

112

4.3  MOTION IN A MAGNETIC FIELD

We will now consider, in greater detail, the motion of a charge moving in

a  magnetic field.  We have learnt  in Mechanics (see Class XI book, Chapter

5) that a force on a particle does work if  the force has a component along

(or opposed to) the direction of motion of the particle. In the case of motion

of a charge in a magnetic field, the magnetic force is perpendicular to the
velocity of the particle. So no work is done and no change in the magnitude
of the velocity is produced (though the direction of momentum may be

changed). [Notice that this is unlike the force due to an electric field, qE,
which can have a component parallel (or antiparallel) to motion and thus
can transfer energy in addition to momentum.]

We shall consider motion of a charged particle in a uniform magnetic
field. First consider the case of v perpendicular to B.  The
perpendicular force, q v × B, acts as a centripetal force and

produces a circular motion perpendicular to the magnetic field.
The particle will describe a circle if v and B are  perpendicular

to each other (Fig. 4.5).

If velocity has a component along B, this component
remains unchanged as the motion along the magnetic field will
not be affected by the magnetic field. The motion in a plane

perpendicular to B is as before a circular one, thereby producing
a helical motion (Fig. 4.6).

You have already learnt in earlier classes (See Class XI,

Chapter 3) that if r is the radius of the circular path of a particle,
then a force of  m v

2 / r, acts perpendicular to the path towards
the centre of the circle, and is called the  centripetal force. If the

velocity v is perpendicular to the magnetic field   B, the  magnetic
force is  perpendicular to both v and B and acts
like a centripetal force. It has a magnitude q v

B. Equating the two expressions for centripetal
force,

m v 2/r = q v B, which gives

r =  m v / qB (4.5)

for the radius of the circle described by the
charged particle. The larger the  momentum,  the

larger is the radius and bigger the circle
described. If ω is the angular frequency, then   v
= ω  r. So,

ω  = 2π ν =  q B/ m [4.6(a)]

which is independent of the velocity or energy .
Here ν is the frequency of rotation. The
independence of ν from energy has important

application in the design of a cyclotron (see
Section 4.4.2).

The time taken for one revolution is T= 2π/ω

≡ 1/ν. If there is a  component of the velocity
parallel to the magnetic field (denoted by v

||
), it will make the particle

FIGURE 4.5 Circular motion

FIGURE 4.6 Helical motion
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Example  4.3   What is the radius of the path of an electron (mass

9 × 10-31 kg and charge 1.6 × 10–19 C) moving at a speed of 3 ×107 m/s in
a magnetic field of 6 × 10–4 T perpendicular to it?  What is its
frequency?  Calculate its energy in  keV. ( 1 eV = 1.6 × 10–19 J).

Solution Using Eq. (4.5) we find
r  = m v / (qB )  = 9 ×10–31 kg × 3 × 107  m s–1 / ( 1.6 × 10–19 C × 6 × 10–4 T )

                      = 28 × 10–2 m = 28 cm

ν = v / (2 πr) = 17×106 s–1   = 17×106  Hz   =17 MHz.

E = (½ )mv 2   = (½ ) 9 × 10–31 kg × 9 × 1014 m2/s2  = 40.5 ×10–17 J

  ≈  4×10–16 J = 2.5 keV.

move along the field and the path of the particle would be a helical one
(Fig. 4.6). The distance moved along the magnetic field  in one rotation is

called pitch p.  Using Eq. [4.6 (a)], we have

p =   v
||
T  =  2πm v

||
 / q B [4.6(b)]

The radius of the circular component of motion is called the radius of
the helix.

4.4 MAGNETIC F IELD DUE TO A CURRENT

ELEMENT, BIOT-SAVART LAW

All magnetic fields that we know are due to currents (or moving
charges) and due to intrinsic magnetic moments of particles.
Here, we shall study the relation between current and the

magnetic field it produces. It is given by the Biot-Savart’s  law.
Fig. 4.7 shows a finite conductor XY carrying current I. Consider
an infinitesimal element dl of the conductor. The magnetic field

dB due to this element is to be determined at a point P which is at
a distance r from it. Let θ be the angle between dl and the
displacement vector r. According to Biot-Savart’s law, the

magnitude of the magnetic field dB is proportional to the current
I, the element length |dl|, and inversely proportional to the square
of the distance r. Its direction* is perpendicular to the plane

containing dl and r . Thus, in vector notation,

d
I d

r
B

r
∝

×l

3

           =
×µ

0

3
4π

I d

r

l r
 [4.7(a)]

where µ
0
/4π is a constant of proportionality. The above expression

holds when the medium is vacuum.

FIGURE 4.7 Illustration of
the Biot-Savart law. The

current element I dl

produces a field dB at a
distance r. The ⊗ sign

indicates that the
field is perpendicular

to the plane of this

page and directed
into it.

* The sense of  dl × r is also given by the Right Hand Screw rule : Look at the
plane containing vectors dl and r. Imagine moving from the first vector towards
second vector. If the movement is anticlockwise, the resultant is towards you.
If it is clockwise, the resultant is away from you.
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The magnitude of this field is,

µ θ=
π
0

2

d sin
d

4

I l

r
B [4.7(b)]

where we have used the property of cross-product. Equation [4.7 (a)]
constitutes our basic equation for the magnetic field.  The proportionality

constant in SI units has the exact value,

70 10 Tm/A
4

µ −=
π [4.7(c)]

We call µ
0
 the permeability of free space (or vacuum).

The Biot-Savart law for the magnetic field has certain similarities, as
well as, differences with the Coulomb’s law for the electrostatic field. Some

of these are:
(i) Both are long range, since both depend inversely on the square of

distance from the source to the point of interest. The principle of

superposition applies to both fields. [In this connection, note that
the magnetic field is linear in the source I dl just as the electrostatic
field is linear in its source: the electric charge.]

(ii) The electrostatic field is produced by a scalar source, namely, the electric
charge. The magnetic field is produced by a vector source I dl.

(iii) The electrostatic field is along the displacement vector joining the

source and the field point. The magnetic field is perpendicular to the
plane containing the displacement vector r and the current element I dl.

(iv) There is an angle dependence in the Biot-Savart law which is not

present  in the electrostatic case. In Fig. 4.7, the magnetic field at any
point in  the direction of dl (the dashed line) is zero. Along this line,
θ = 0, sin θ = 0 and from Eq. [4.7(a)], |dB| = 0.

There is an interesting  relation between ε
0
, the permittivity of free

space; µ
0
, the permeability of free space; and c, the speed of light in vacuum:

( ) 0
0 0 04

4

µε µ ε   = π     π  ( )7

9

1
10

9 10

−  =     × 8 2 2

1 1

(3 10 ) c
= =

×
We will discuss this connection further in Chapter 8 on the

electromagnetic waves. Since the speed of light in vacuum is constant,

the product µ
0
ε

0
 is fixed in magnitude. Choosing the value of either ε

0
 or

µ
0
, fixes the value of the other. In SI units, µ

0
 is fixed to be equal to

4π × 10–7
 in magnitude.

Example 4.4 An element ˆ∆ = ∆x il  is placed at the origin and carries

a large current I = 10 A (Fig. 4.8). What is the magnetic field on the y-

axis at a distance of 0.5 m. ∆x = 1 cm.

FIGURE 4.8
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Solution

 
0

2

d sin
|d |

4

I l

r

µ θ
=

π
B  [using Eq. (4.7)]

2d 10 ml x −= ∆ = , I = 10 A,  r = 0.5 m = y, 7
0

T m
/4 10

A
µ −π =

θ = 90° ; sin θ = 1

7 2

2

10 10 10
d

25 10

− −

−
× ×=

×
B = 4 × 10–8 T

The direction of the field is in the +z-direction. This is so since,

ˆ ˆd = ∆× i × jx yrl ( )ˆ ˆy x= ∆ i × j ˆy x= ∆ k

We remind you of the following cyclic property of cross-products,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ; ;× = × = × =i j k j k i k i j

Note that the field is small in magnitude.

In the next section, we shall use the Biot-Savart law to calculate the
magnetic field due to a circular loop.

4.5 MAGNETIC FIELD ON THE AXIS OF A CIRCULAR

CURRENT LOOP

In this section, we shall evaluate the magnetic field  due

to a circular coil along its axis. The evaluation entails
summing up the effect of infinitesimal current elements
(I dl) mentioned in the previous section. We assume that

the current I is steady and that the evaluation is carried
out in free space (i.e., vacuum).

Fig. 4.9 depicts a circular loop carrying a steady

current I. The loop is placed in the  plane with its
centre at the origin O and has a radius R. The x-axis is
the axis of the loop. We wish to calculate the magnetic

field at the point P on this axis. Let x be the distance of P
from the centre O of the loop.

Consider a conducting element dl of the loop. This is

shown in Fig. 4.9. The magnitude dB of the magnetic
field due to dl is given by the Biot-Savart law [Eq. 4.7(a)],

0

34
=

× rI d
dB

r

µ

π

l
(4.8)

Now r2
 = x

2
 + R

2 . Further, any element of the loop
will be perpendicular to the displacement vector from
the element to the axial point. For example, the element dl in Fig. 4.9 is

in the  plane, whereas, the displacement vector r from dl to the axial
point P is in the  plane. Hence |dl × r|=r dl. Thus,

 ( )π

0

2 2

d
d

4

I l
B

x R

µ
=

+ (4.9)

FIGURE 4.9 Magnetic field on the
axis of a current carrying circular

loop of radius R. Shown are the

magnetic field dB (due to a line
element dl ) and its

components along and

perpendicular to the axis.

 
E

X
A
M

P
L
E
 
4
.4

2024-25



Physics

116

The direction of dB is shown in Fig. 4.9. It is perpendicular to the

plane formed by dl and r. It has an x-component dB
x
 and a component

perpendicular to x-axis, dB
⊥
. When the components perpendicular to

the x-axis are summed over, they cancel out and we obtain a null result.

For example, the dB
⊥
 component due to dl is cancelled by the

contribution due to the diametrically opposite dl element, shown in
Fig. 4.9. Thus, only the x-component survives. The net contribution along

x-direction can be obtained by integrating dB
x
  = dB cos θ over the loop.

For Fig. 4.9,

2 2 1/2
cos

( )

R

x R
θ =

+  (4.10)

From Eqs. (4.9) and (4.10),

( )π

0

3/22 2

d
d

4
x

I l R
B

x R

µ
=

+

The summation of elements dl over the loop yields 2πR, the
circumference of the loop. Thus, the magnetic field at P due to entire
circular loop is

( )
2

0

3/22 2

ˆ ˆ

2
x

I R
B

x R

µ
= =

+
B i i (4.11)

As a special case of the above result, we may obtain the field at the centre

of the loop. Here  x = 0, and we obtain,

0
0

ˆ
2

I

R

µ
=B i (4.12)

The magnetic field lines due to a circular wire form closed loops and
are shown in Fig. 4.10. The direction of the magnetic field is given by

(another) right-hand thumb rule stated below:
Curl the palm of your right hand around the circular wire with the

fingers pointing in the direction of the current. The right-hand thumb

gives the direction of the magnetic field.

FIGURE 4.10 The magnetic field lines for a current loop. The direction of
the field is given by the right-hand thumb rule described in the text. The

upper side of the loop may be thought of as the north pole and the lower
side as the south pole of a magnet.
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Example 4.5 A straight wire carrying a current of 12 A is bent into a
semi-circular arc of radius 2.0 cm as shown in Fig. 4.11(a). Consider

the magnetic field B at the centre of the arc. (a) What is the magnetic
field due to the straight segments? (b) In what way the contribution
to B from the semicircle differs from that of a circular loop and in

what way does it resemble? (c) Would your answer be different if the
wire were bent into a semi-circular arc of the same radius but in the
opposite way as shown in Fig. 4.11(b)?

FIGURE 4.11

Solution

(a) dl and r for each element of the straight segments are parallel.
Therefore, dl × r = 0. Straight segments do not contribute to
|B|.

(b) For all segments of the semicircular arc, dl × r are all parallel to
each other (into the plane of the paper). All such contributions
add up in magnitude. Hence direction of B for a semicircular arc

is given by the right-hand rule and magnitude is half that of a
circular loop. Thus B is 1.9 × 10–4 T normal to the plane of the
paper going into it.

(c) Same magnitude of B but opposite in direction to that in (b).

Example 4.6 Consider a tightly wound 100 turn coil of radius 10

cm, carrying a current of 1 A. What is the magnitude of the magnetic
field at the centre of the coil?

Solution Since the coil is tightly wound, we may take each circular

element to have the same radius R = 10 cm = 0.1 m. The number of
turns N = 100. The magnitude of the magnetic field is,

–7 2
0

–1

4 10 10 1

2 2 10

NI
B

R

µ π × × ×
= =

×
42 10−= π × 46 28 10 T. −= ×

4.6  AMPERE’S CIRCUITAL LAW

There is an alternative and appealing way in which the

Biot-Savart law may be expressed. Ampere’s circuital law

considers an open surface with a boundary (Fig. 4.12).

The surface has current passing through it. We consider

the boundary to be made up of a number of small line

elements. Consider one such element of length dl. We

take the value of the tangential component of the

magnetic field, B
t
,
 
at this element and multiply it by the FIGURE 4.12
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length of that element dl [Note: B
t
dl=B.d l]. All such

products are added together. We consider the limit as the

lengths of elements get smaller and their number gets

larger. The sum then tends to an integral. Ampere’s   law

states that this integral is  equal to µ
0
 times the total

current passing through  the surface,  i.e.,

“B.dl = µ
0
I [4.13(a)]

where I  is the total current through the surface. The

integral is taken over the closed loop coinciding with the

boundary C of the surface. The relation above involves a

sign-convention, given by the right-hand rule. Let the

fingers of the right-hand be curled in the sense the

boundary is traversed in the loop integral “B.dl. Then

the direction of the thumb gives the sense in which the

current I  is regarded as positive.

For several applications, a much simplified version of

Eq. [4.13(a)] proves sufficient. We shall assume that, in

such cases, it is possible to choose the loop (called

an amperian loop) such that at each point of the

loop, either

(i) B is tangential to the loop and is a non-zero constant
B, or

(ii) B is normal to the loop, or

(iii) B vanishes.
Now, let L be the length (part) of the  loop for which B

is tangential. Let I
e
  be the current enclosed by the loop.

Then, Eq. (4.13) reduces to,

BL =µ
0
I
e

[4.13(b)]

When there is a system with a symmetry such as for

a straight infinite current-carrying wire in Fig. 4.13, the
Ampere’s law enables an easy evaluation of the magnetic
field, much the same way Gauss’ law helps in

determination of the electric field. This is exhibited in the
Example 4.8 below. The boundary of the loop chosen is
a circle and magnetic field is tangential to the

circumference of the circle. The law gives, for the left hand
side of Eq. [4.13 (b)], B. 2πr. We find that the magnetic
field at a distance r outside the wire is tangential and

given by

B × 2πr  =  µ
0 
I,

B = µ
0 
 I/ (2πr) (4.14)

The above result for the infinite wire  is interesting
from several points of view.

A
N

D
R

E
 A

M
P
E

R
E

 (
1
7
7
5
 –

1
8
3
6
)

Andre Ampere (1775 –

1836) Andre Marie Ampere
was a French physicist,
mathematician and chemist

who founded the science of
electrodynamics. Ampere
was a child prodigy

who mastered advanced
mathematics by the age of
12. Ampere grasped the

significance of Oersted’s
discovery. He carried out a
large series of experiments

to explore the relationship
between current electricity
and magnetism. These

investigations culminated
in 1827 with the
publication of the

‘Mathematical Theory of
Electrodynamic Pheno-
mena Deduced Solely from

Experiments’. He hypo-
thesised that all magnetic
phenomena are due to

circulating electric
currents. Ampere was
humble and absent-

minded. He once forgot an
invitation to dine with the
Emperor Napoleon. He died

of pneumonia at the age of
61. His gravestone bears
the epitaph: Tandem Felix

(Happy at last).

(i) It implies that the field at every point on a circle of
radius r, (with the wire along the axis), is same in

magnitude. In other words, the magnetic field
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possesses what is called a cylindrical symmetry. The field that
normally can depend on three coordinates depends only on one: r.

Whenever there is symmetry, the solutions simplify.
(ii) The field direction at any point on this circle is tangential to it.

Thus, the lines of constant magnitude of magnetic field form

concentric circles. Notice now, in Fig. 4.1(c), the iron filings form

concentric circles. These lines called magnetic field lines form closed
loops. This is unlike the electrostatic field lines which originate

from positive charges and end at negative charges. The expression

for the magnetic field of a straight wire provides a theoretical

justification to Oersted’s experiments.
(iii) Another interesting point to note is that even though the wire is

infinite, the field due to it at a non-zero distance is not infinite. It

tends to blow up only when we come very close to the wire. The

field is directly proportional to the current and inversely
proportional to the distance from the (infinitely long) current source.

(iv) There exists a simple rule to determine the direction of the magnetic
field due to a long wire. This rule, called the right-hand rule*, is:

Grasp the wire in your right hand with your extended thumb pointing
in the direction of the current. Your fingers will curl around in the
direction of the magnetic field.

Ampere’s circuital law is not new in content from Biot-Savart law.
Both relate the magnetic field and the current, and both express the same
physical consequences of a steady electrical current. Ampere’s law is to

Biot-Savart law, what Gauss’s law is to Coulomb’s law. Both, Ampere’s
and Gauss’s law relate a physical quantity on the periphery or boundary
(magnetic or electric field) to another physical quantity, namely, the source,

in the interior (current or charge). We also note that Ampere’s circuital
law holds for steady currents which do not fluctuate with time. The
following example will help us understand what is meant by the term

enclosed current.

Example 4.7 Figure 4.13 shows a long straight wire of a circular
cross-section (radius a) carrying steady current I. The current I is
uniformly distributed across this cross-section. Calculate the

magnetic field in the region r < a and r > a.

FIGURE 4.13

* Note that there are two distinct right-hand rules: One which gives the direction
of B on the axis of current-loop and the other which gives direction of B
for a straight conducting wire. Fingers and thumb play different roles in
the two.
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Solution (a) Consider the case r > a . The Amperian loop, labelled 2,
is a circle concentric with the cross-section. For this loop,

L  = 2 π r
I
e
 = Current enclosed by the loop = I

The result is the familiar expression for a long straight wire

B (2π r) = µ
0
I

π 

0

2

I
B

r

µ
= [4.15(a)]

1
B

r
∝ (r > a)

Now the current enclosed I
e
 is not I, but is less than this value.

Since the current distribution is uniform, the current enclosed is,

I I
r

a
e

=






π
π

2

2  
2

2

Ir

a
=

Using Ampere’s law, π

2

0 2
(2 )

I r
B r

a
µ=

B
I

a
r= 





µ
0

2
2π [4.15(b)]

B ∝ r      (r < a)

FIGURE 4.14

Figure (4.14) shows a plot of the magnitude of B with distance r

from the centre of the wire. The direction of the field is tangential to

the respective circular loop (1 or 2) and given by the right-hand

rule described earlier in this section.

This example possesses the required symmetry so that Ampere’s

law can be applied readily.

It should be noted that while Ampere’s circuital law holds for any

loop, it may not always facilitate an evaluation of the magnetic field in

every case. For example, for the case of the circular loop discussed in

Section 4.5, it cannot be applied to extract the simple expression

B = µ
0
I/2R [Eq. (4.12)] for the field at the centre of the loop. However,

there exists a large number of situations of high symmetry where the law

can be conveniently applied. We shall use  it in the next section to calculate
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the magnetic field produced by two commonly used and very useful

magnetic systems: the solenoid and the toroid.

4.7  THE SOLENOID

We shall discuss a long solenoid. By long solenoid we mean that the
solenoid’s length is large compared to its radius. It consists of a long wire

wound in the form of a helix where the neighbouring turns are closely
spaced. So each turn can be regarded as a circular loop.  The net magnetic
field is the vector sum of the fields due to all the turns. Enamelled wires

are used for winding so that turns are insulated from each other.

Figure 4.15 displays the magnetic field lines for a finite solenoid. We
show a section of this solenoid in an enlarged manner in Fig. 4.15(a).
Figure 4.15(b) shows the entire finite solenoid with its magnetic field. In
Fig. 4.15(a), it is clear from the circular loops that the field  between two
neighbouring turns vanishes. In Fig. 4.15(b), we see that the field at the
interior mid-point P is uniform, strong and along the axis of the solenoid.
The field at the exterior mid-point Q is weak and moreover is along the
axis of the solenoid with no perpendicular or normal component. As the

FIGURE 4.15 (a) The magnetic field due to a section of the solenoid which has been
stretched out for clarity. Only the exterior semi-circular part is shown. Notice

how the circular loops between neighbouring turns tend to cancel.
(b) The magnetic field of a finite solenoid.

FIGURE 4.16 The magnetic field of a very long solenoid. We consider a
rectangular Amperian loop abcd to determine the field.
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solenoid is made longer it appears like a long cylindrical metal sheet.
Figure 4.16 represents this idealised picture. The field outside the solenoid
approaches zero. We shall assume that the field outside is zero. The field
inside becomes everywhere parallel to the axis.

Consider a rectangular Amperian loop abcd. Along cd the field is zero

as argued above. Along transverse sections bc and ad, the field component
is zero. Thus, these two sections  make no contribution. Let the field along
ab be B. Thus, the relevant length of the Amperian loop is, L = h.

Let n be the number of turns per unit length, then the total number
of turns is  nh. The enclosed current is,  I

e
 = I (n h), where I is the current

in the solenoid. From Ampere’s circuital law [Eq. 4.13 (b)]

BL =  µ
0
I
e
,    B h = µ

0
I (n h)

B = µ
0
 n I (4.16)

The direction of the field is given by the right-hand rule. The solenoid
is commonly used to obtain a uniform magnetic field. We shall see in the

next chapter that a large field is possible by inserting a soft iron core
inside the solenoid.

Example 4.8 A solenoid of length 0.5 m has a radius of 1 cm and is
made up of 500 turns. It carries a current of 5 A. What is the

magnitude of the magnetic field inside the solenoid?

Solution  The number of turns per unit length is,

500
1000

0.5
n = =  turns/m

The length l = 0.5 m and radius r = 0.01 m. Thus, l/a = 50 i.e., l >> a .

Hence, we can use the long solenoid formula, namely, Eq. (4.20)
B = µ

0
n I

   = 4π × 10–7 × 103 × 5

   = 6.28 × 10–3 T

FIGURE 4.17 Two long straight

parallel conductors carrying steady

currents I
a
 and I

b
 and separated by a

distance d. B
a
 is the magnetic field

set up by conductor ‘a’ at conductor ‘b’.

4.8 FORCE BETWEEN TWO PARALLEL

CURRENTS, THE AMPERE

We have learnt that there exists a magnetic field due to a

conductor carrying a current which obeys the Biot-Savart

law. Further, we have learnt that an external magnetic field

will exert a force on a current-carrying conductor. This

follows from the Lorentz force formula. Thus, it is logical

to expect that two current-carrying conductors placed near

each other will exert (magnetic) forces on each other. In

the period 1820-25, Ampere studied the nature of this

magnetic force and its dependence on the magnitude of

the current, on the shape and size of the conductors, as

well as, the distances between the conductors. In this

section, we shall take the simple example of two parallel

current- carrying conductors, which will perhaps help us

to appreciate Ampere’s painstaking work.
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Figure 4.17 shows two long parallel conductors a and b separated

by a distance d and carrying (parallel) currents I
a
 and I

b
, respectively.

The conductor ‘a’ produces,  the same magnetic field B
a
 at all points

along the conductor ‘b’. The right-hand rule tells us that the direction of

this field is downwards (when the conductors are placed horizontally).

Its magnitude is given by Eq. [4.15(a)] or from Ampere’s circuital law,

0

2

a

a

I
B

d

µ
=

π

The conductor ‘b’ carrying a current I
b
 will experience a sideways

force due to the  field B
a
. The direction of this force is towards the

conductor ‘a’ (Verify this). We label this force as F
ba

, the force on a

segment L of ‘b’ due to ‘a’. The magnitude of this force is given by

Eq. (4.4),

=
ba b a

F I LB

      
µ

π
= 0

2
a bI I

L
d

(4.17)

It is of course possible to compute the force on ‘a’ due to ‘b’. From
considerations similar to above we can find the force F

ab
, on a segment of

length L of ‘a’ due to the current in ‘b’. It  is equal in magnitude to F
ba

,
and directed towards ‘b’. Thus,

F
ba

 = –F
ab

(4.18)

Note that this is consistent with Newton’s third Law. Thus, at least for

parallel conductors and steady currents, we have shown that the

Biot-Savart law and the Lorentz force yield results in accordance with

Newton’s third Law*.

We have seen from above that currents flowing in the same direction

attract each other. One can show that oppositely directed currents repel

each other. Thus,

Parallel currents attract, and antiparallel currents repel.

This rule is the opposite of what we find in electrostatics. Like (same

sign) charges repel each other, but like (parallel) currents attract each other.

Let f
ba

 represent the magnitude of the force F
ba

 per unit length. Then,

from Eq. (4.17),

π

0

2

a b

ba

I I
f

d

µ
= (4.19)

The above expression is used to define the ampere (A), which is one of

the seven SI base units.

* It turns out that when we have time-dependent currents and/or charges in

motion, Newton’s third law may not hold for forces between charges and/or

conductors. An essential consequence of the Newton’s third law in mechanics

is conservation of momentum of an isolated system. This, however, holds even

for the case of time-dependent situations with electromagnetic fields, provided
the momentum carried by fields is also taken into account.
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The ampere is the value of that steady current which, when maintained

in each of the two very long, straight, parallel conductors of negligible

cross-section, and placed one metre apart in vacuum, would produce

on  each of these conductors a force equal to  2 × 10–7 newtons per metre

of length.

This definition of the ampere was adopted in 1946. It is a theoretical

definition. In practice, one must eliminate the effect of the earth’s magnetic

field and substitute very long wires by multiturn coils of appropriate

geometries. An instrument called the current balance is used to measure

this mechanical force.

The SI unit of charge, namely, the coulomb, can now be defined in

terms of the ampere.

When a steady current of 1A is set up in a conductor, the quantity of

charge that flows through its cross-section in 1s is one coulomb (1C).

Example 4.9 The horizontal component of the earth’s magnetic field
at a certain place is 3.0 ×10–5 T and the direction of the field is from
the geographic south to the geographic north. A very long straight

conductor is carrying a steady current of 1A. What is the force per
unit length on it when it is placed on a horizontal table and the
direction of the current is (a) east to west; (b) south to north?

Solution  F = Il × B

F = IlB sinθ
The force per unit length is

f = F/l = I B sinθ
(a) When the current is flowing from east to west,

θ = 90°

Hence,
f = I B
  = 1 × 3 × 10–5 = 3 × 10–5 N m–1

This is larger than the value 2×10–7 Nm–1 quoted in the definition
of the ampere. Hence it is important to eliminate the effect of the
earth’s magnetic field and other stray fields while standardising

the ampere.
The direction of the force is downwards. This direction may be
obtained by the directional property of cross product of vectors.

(b) When the current is flowing from south to north,
θ = 0o

f = 0

Hence there is no force on the conductor.

4.9  TORQUE ON CURRENT LOOP, MAGNETIC DIPOLE

4.9.1 Torque on a rectangular current loop in a uniform
magnetic field

We now show that a rectangular loop carrying a steady current I and
placed in a uniform magnetic field experiences a torque. It does not

experience a net force. This behaviour is analogous to that of electric

dipole in a uniform electric field (Section 1.11).
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We first consider the simple case when the

rectangular loop is placed such that the uniform

magnetic field B is in the plane of the loop. This is

illustrated in Fig. 4.18(a).
The field exerts no force on the two arms AD and BC

of the loop. It is perpendicular to the arm AB of the loop

and exerts a force F
1
 on it which is directed into the

plane of the loop. Its magnitude is,

F
1
 = I b B

Similarly, it exerts a force F
2
 on the arm CD and F

2

is directed out of the plane of the paper.

F
2
 = I b B = F

1

Thus, the net force on the loop is zero. There is a

torque on the loop due to the pair of forces F
1
 and F

2
.

Figure 4.18(b) shows a view of the loop from the AD

end. It shows that the torque on the loop tends to rotate
it anticlockwise. This torque is (in magnitude),

1 2
2 2

a a
F Fτ = +

( )
2 2

a a
IbB IbB I ab B= + =

    = I A B (4.20)

where A = ab is the area of the rectangle.

We next consider the case when the plane of the loop,
is not along the magnetic field, but makes an angle with

it. We take the angle between the field and the normal to
the coil to be angle θ (The previous case corresponds to
θ = π/2). Figure 4.19 illustrates this general case.

The forces on the arms BC and DA are equal, opposite, and act along
the axis of the coil, which connects the centres of mass of BC and DA.
Being collinear along the axis they cancel each other, resulting in no net

force or torque. The forces on arms AB and CD are F
1
 and F

2
. They too

are equal and opposite, with magnitude,

F
1
 = F

2
 = I b B

But they are not collinear!  This results in a couple as before. The
torque is, however, less than the earlier case when plane of loop was
along the magnetic field. This is because the perpendicular distance

between the forces of the couple has decreased. Figure 4.19(b) is a view
of the arrangement from the AD end and it illustrates these two forces
constituting a couple. The magnitude of the torque on the loop is,

1 2sin sin
2 2

a a
F Fτ θ θ= +

= I ab B sin θ

   = I A B sin θ (4.21)

FIGURE 4.18 (a) A rectangular
current-carrying coil in uniform

magnetic field. The magnetic moment
m points downwards. The torque τττττ is
along the axis and tends to rotate the

coil anticlockwise. (b) The couple
acting on the coil.
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As θ à 0, the perpendicular distance between
the forces of the couple also approaches zero. This

makes the forces collinear and the net force and
torque zero. The torques in Eqs. (4.20) and (4.21)
can be expressed as vector product of the magnetic

moment of the coil and the magnetic field.
We define the magnetic moment of the current
loop as,

m = I A (4.22)

where the direction of the area vector A is given

by the right-hand thumb rule and is directed into
the plane of the paper in Fig. 4.18. Then as the
angle between m and B is θ ,  Eqs. (4.20) and (4.21)

can be expressed by one expression

(4.23)

This  is analogous to the electrostatic case

(Electric dipole of dipole moment p
e
 in an electric

field E).

τ = p E×
e

As is clear from Eq. (4.22), the dimensions of the
magnetic moment are [A][L2] and its unit is Am2.

From Eq. (4.23), we see that the torque τττττ

vanishes when m is either parallel or antiparallel
to the magnetic field B. This indicates a state of
equilibrium as there is no torque on the coil (this

also applies to any object with a magnetic moment
m). When m and B are parallel the equilibrium is
a stable one. Any small rotation of the coil

produces a torque which brings it back to its original position. When
they are antiparallel, the equilibrium is unstable as any rotation produces
a torque which increases with the amount of rotation. The presence of

this torque is also the reason why a small magnet or any magnetic dipole
aligns itself with the external magnetic field.

If the loop has N closely wound turns, the expression for torque, Eq.

(4.23), still holds, with

m = N I A (4.24)

Example 4.10 A 100 turn closely wound circular coil of radius 10
cm carries a current of 3.2 A. (a) What is the field at the centre of the

coil? (b) What is the magnetic moment of this coil?
The coil is placed in a vertical plane and is free to rotate about a

horizontal axis which coincides with its diameter. A uniform magnetic

field of 2T in the horizontal direction exists such that initially the axis
of the coil is in the direction of the field. The coil rotates through an
angle of 90° under the influence of the magnetic field. (c) What are the

magnitudes of the torques on the coil in the initial and final position?
(d) What is the angular speed acquired by the coil when it has rotated
by 90°? The moment of inertia of the coil is 0.1 kg m2.

FIGURE 4.19 (a) The area vector of the loop
ABCD makes an arbitrary angle θ with

the magnetic field. (b) Top view of

the loop. The forces F
1
 and F

2
 acting

on the arms AB and CD
are indicated.
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Solution

(a) From Eq. (4.12)

0

2

NI
B

R

µ
=

Here, N = 100; I = 3.2 A, and R = 0.1 m. Hence,

 =
× ×

×

−

−

4 10 10

2 10

5

1      (using π × 3.2 = 10)

    = 2 × 10–3 T
The direction is given by the right-hand thumb rule.

(b) The magnetic moment is given by Eq. (4.24),

m = N I A = N I π r2 = 100 × 3.2 × 3.14 × 10
–2

 = 10 A m
2

The direction is once again given by the right-hand thumb rule.

(c) τ = m × B    [from Eq. (4.23)]

   = m B sin θ

Initially, θ = 0. Thus, initial torque τ
i
 = 0. Finally, θ = π/2 (or 90º).

Thus, final torque τ
f
 = m B = 10 × 2 = 20 N m.

(d)  From Newton’s second law,

I  

where I  is the moment of inertia of the coil. From chain rule,

d d d d

d d d d
= =

t t

ω ω θ ω
ω

θ θ

Using this,

I  d sin d= m Bω ω θ θ

Integrating from θ = 0 to θ = π/2,

Example 4.11

(a) A current-carrying circular loop lies on a smooth horizontal plane.

Can a uniform magnetic field be set up in such a manner that
the loop turns around itself (i.e., turns about the vertical axis).

(b) A current-carrying circular loop is located in a uniform external

magnetic field. If the loop is free to turn, what is its orientation
of stable equilibrium? Show that in this orientation, the flux of
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the total field (external field + field produced by the loop) is

maximum.
 (c) A loop of irregular shape carrying current is located in an external

magnetic field. If the wire is flexible, why does it change to a

circular shape?

Solution

(a) No, because that would require τττττ to be in the vertical direction.

But τττττ = I A × B, and since A of the horizontal loop is in the vertical
direction, τ would be in the plane of the loop for any B.

(b) Orientation of stable equilibrium is one where the area vector A

of the loop is in the direction of external magnetic field. In this
orientation, the magnetic field produced by the loop is in the same
direction as external field, both normal to the  plane of the loop,

thus giving rise to maximum flux of the total field.
(c) It assumes circular shape with its plane normal to the field to

maximise flux, since for a given perimeter, a circle encloses greater

area than any other shape.

4.9.2  Circular current loop as a magnetic dipole

In this section, we shall consider the elementary magnetic element: the
current loop. We shall show that the magnetic field (at large distances)
due to current in a circular current loop is very similar in behaviour to
the electric field of an electric dipole. In Section 4.5, we have evaluated

the magnetic field on the axis of a circular loop, of a radius R, carrying a
steady current I. The magnitude of this field is [(Eq. (4.11)],

( )
µ

=
+

2

0

3/2
2 2

2

I R
B

x R

and its direction is along the axis and given by the right-hand thumb
rule (Fig. 4.10). Here, x is the distance along the axis from the centre of

the loop. For x >> R, we may drop the R2 term in the denominator. Thus,

µ
=

2

0

32

IR
B

x

Note that the area of the loop A = πR2. Thus,

µ
=

π
0

3
2

IA
B

x

As earlier, we define the magnetic moment m to have a magnitude IA,

m  = I A. Hence,

B
m

≃
µ

0

3
2 πx

    π
µ

= 0

3

2

4 x

m

[4.25(a)]

The expression of Eq. [4.25(a)] is very similar to an expression obtained
earlier for the electric field of a dipole. The similarity may be seen if we

substitute,

 µ ε→0 01/
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e→m p  (electrostatic dipole)

 →B E   (electrostatic field)

We then obtain,

3
0

2

4
e

xε
=

π
p

E

which is precisely the field for an electric dipole at a point on its axis.
considered in Chapter 1, Section 1.9 [Eq. (1.20)].

It can be shown that the above analogy can be carried further. We
had found in Chapter 1 that the electric field on the perpendicular bisector
of the dipole is given by [See Eq.(1.21)],

E ≃
p

e

x4
0

3
πε

where x is the distance from the dipole. If we replace p à m and 0 01/µ ε→
in the above expression, we obtain the result for B for a point in the
plane of the loop at a distance x  from the centre. For  x >>R,

B
m

≃
µ

0

3
4π x

x R; >> [4.25(b)]

The results given by Eqs. [4.25(a)] and [4.25(b)] become exact for a
point magnetic dipole.

The results obtained above can be shown to apply to any planar loop:
a planar current loop is equivalent to a magnetic dipole of dipole moment
m = I A, which is the analogue of electric dipole moment p. Note, however,
a fundamental difference: an electric dipole is built up of two elementary
units — the charges (or electric monopoles). In magnetism, a magnetic
dipole (or a current loop) is the most elementary element. The equivalent
of electric charges, i.e., magnetic monopoles, are not known to exist.

We have shown that a current loop (i) produces a magnetic field (see
Fig. 4.10) and behaves like a magnetic dipole at large distances, and
(ii) is subject to torque like a magnetic needle. This led Ampere to suggest
that all magnetism is due to circulating currents. This seems to be partly
true and no magnetic monopoles have been seen so far. However,
elementary particles such as an electron or a proton also carry an intrinsic
magnetic moment, not accounted by circulating currents.

4.10  THE MOVING COIL GALVANOMETER

Currents and voltages in circuits have been discussed extensively in
Chapters 3. But how do we measure them? How do we claim that
current in a circuit is 1.5 A or the voltage drop across a resistor is 1.2 V?
Figure 4.20 exhibits a very useful instrument for this purpose: the moving
coil galvanometer (MCG). It is a device whose principle can be understood
on the basis of our discussion in Section 4.9.

The galvanometer consists of a coil, with many turns, free to rotate
about a fixed axis (Fig. 4.20), in a uniform radial magnetic field. There is
a cylindrical soft iron core which not only makes the field radial but also
increases the strength of the magnetic field.  When a current flows through
the coil, a torque acts on it. This torque is given by Eq. (4.20) to be

τ = NI AB
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where the symbols have their usual meaning. Since
the field is radial by design, we have taken sin θ = 1 in

the above expression for the torque. The magnetic
torque NIAB tends to rotate the coil. A spring S

p

provides a counter torque kφ that balances the

magnetic torque NIAB; resulting in a steady angular
deflection φ. In equilibrium

kφ = NI AB

where k is the torsional constant of the spring; i.e. the
restoring torque per unit twist. The deflection φ is
indicated on the scale by a pointer attached to the

spring. We have

φ = 





NAB

k
I (4.26)

The quantity in brackets is a constant for a given
galvanometer.

The galvanometer can be used in a number of ways.
It can be used as a detector to check if a current is
flowing in the circuit. We have come across this usage

in the Wheatstone’s bridge arrangement. In this usage
the neutral position of the pointer (when no current is
flowing through the galvanometer) is in the middle of

the scale and not at the left end as shown in Fig.4.20.
Depending on the direction of the current, the pointer’s
deflection is either to the right or the left.

The galvanometer cannot as such be used as an

ammeter to measure the value of the current in a given circuit. This is for
two reasons: (i) Galvanometer is a very sensitive device, it gives a full-

scale deflection for a current of the order of µA. (ii) For measuring currents,

the galvanometer has to be connected in series, and as it has a large

resistance, this will change the value of the current in the circuit. To
overcome these difficulties, one attaches a small resistance r

s
, called shunt

resistance, in parallel with the galvanometer coil; so that most of the

current passes through the shunt. The resistance of this arrangement is,

R
G
 r

s 
/ (R

G
  + r

s
)   ≃  r

s
         if    R

G
 >>  r

s

If r
s 
has small value, in relation to the resistance of the rest of the

circuit R
c
, the effect of introducing the measuring instrument is also small

and negligible. This arrangement is schematically shown in Fig. 4.21.
The scale of this ammeter is calibrated and then graduated to read off

the current value with ease. We define the current sensitivity of the
galvanometer as the deflection per unit current. From Eq. (4.26) this
current sensitivity is,

NAB

I k

φ = (4.27)

A convenient way for the manufacturer  to increase the sensitivity is
to increase the number of turns N. We choose galvanometers having

sensitivities of value, required by our experiment.

FIGURE 4.20 The moving coil

galvanometer. Its elements are
described in the text. Depending on
the requirement, this device can be

used as a current detector or for
measuring the value of the current

(ammeter) or voltage (voltmeter).

FIGURE 4.21
Conversion of a

galvanometer (G) to

an ammeter by the
introduction of a

shunt resistance r
s
 of

very small value in
parallel.
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The galvanometer can also be used as a voltmeter to measure the
voltage across a given section of the circuit. For this it must be connected

in parallel with that section of the circuit. Further, it must draw a very
small current, otherwise the voltage measurement will disturb the original
set up by an amount which is very large. Usually we like to keep the

disturbance due to the measuring device below one per cent.  To ensure
this, a large resistance R is connected in series with the galvanometer.
This arrangement is schematically depicted in Fig.4.22. Note that the

resistance of the voltmeter is now,

R
G
 + R ≃ R :  large

The scale of the voltmeter is calibrated to read off the voltage value
with ease. We define the voltage sensitivity as the deflection per unit

voltage. From Eq. (4.26),

φ

V

NAB

k

I

V

NAB

k R
= 





= 





1
(4.28)

An interesting point to note is that increasing the current sensitivity
may not necessarily increase the voltage sensitivity. Let us take Eq. (4.27)

which provides a measure of current sensitivity. If N → 2N, i.e., we double
the number of turns, then

2
I I

φ φ→

Thus, the current sensitivity doubles. However, the resistance of the
galvanometer is also likely to double, since it is proportional to the length
of the wire. In Eq. (4.28), N →2N, and R →2R, thus the voltage sensitivity,

V V

φ φ→

remains unchanged. So in general, the modification needed for conversion
of a galvanometer to an ammeter  will be different from what is needed for

converting it into a voltmeter.

Example 4.12 In the circuit (Fig. 4.23) the current is to be

measured. What is the value of the current if the ammeter shown

(a) is a galvanometer with a resistance R
G
 = 60.00 Ω; (b) is a

galvanometer described in (a) but converted to an ammeter by a

shunt resistance r
s
 = 0.02 Ω; (c) is an ideal ammeter with zero

resistance?

FIGURE 4.23

FIGURE 4.22

Conversion of a
galvanometer (G) to a

voltmeter by the

introduction of a
resistance R of large

value in series.
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SUMMARY

1. The total force on a charge q moving with velocity v in the presence of

magnetic and electric fields B and E, respectively is called the Lorentz
force. It is given by the expression:

F = q (v × B + E)

The magnetic force q (v × B) is normal to v and work done by it is zero.

2. A straight conductor of length l and carrying a steady current I

experiences a force F in a uniform external magnetic field B,

F = I l × B

where|l| = l and the direction of l is given by the direction of the

current.

3. In a uniform magnetic field B, a charge q executes a circular orbit in

a plane normal to B. Its frequency of uniform circular motion is called
the cyclotron frequency and is given by:

2
c

q B

m
ν =

π

This frequency is independent of the particle’s speed and radius. This
fact is exploited in a machine, the cyclotron, which is used to

accelerate charged particles.

4. The Biot-Savart law asserts that the magnetic field dB due to an

element dl carrying a steady current I at a point P at a distance r from

the current element is:

0

3

d
d

4
I

r

µ ×=
π

l r
B

To obtain the total field at P, we must integrate this vector expression

over the entire length of the conductor.

5. The magnitude of the magnetic field due to a circular coil of radius R

carrying a current I at an axial distance x from the centre is

E
X

A
M

P
L
E
 
4
.1

2

Solution

(a) Total resistance in the circuit is,

3 63
G

R + = Ω . Hence, I = 3/63 = 0.048 A.

(b) Resistance of the galvanometer converted to an ammeter is,

R r

R r

G s

G s
+

=
×

+
60 0 02

60 0 02

Ω Ω
Ω

.

( . )
 ≃ 0.02Ω

Total resistance in the circuit is,

0.02 3 3.02Ω + Ω = Ω . Hence, I = 3/3.02 = 0.99 A.

(c) For the ideal ammeter with zero resistance,

 I =  3/3 = 1.00 A
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2
0

2 2 3/22( )

IR
B

x R

µ
=

+

At the centre this reduces to

0

2

I
B

R

µ
=

6. Ampere’s Circuital Law:  Let an open surface S be bounded by a loop

C. Then the Ampere’s law states that B l.d I=∫ µ
0

C

Ñ  where I refers to

the current passing through S. The sign of I is determined from the

right-hand rule. We have discussed a simplified form of this law. If B
is directed along the tangent to every point on the perimeter L of a

closed curve and is constant in magnitude along perimeter then,

BL = µ
0
 I

e

where I
e
 is the net current enclosed by the closed circuit.

7. The magnitude of the magnetic field at a distance R from a long,

straight wire carrying a current I is given by:

π

0

2

I
B

R

µ
=

The field lines are circles concentric with the wire.

8. The magnitude of the field B inside a long solenoid carrying a current

I is

B = µ0nI

where n is the number of turns per unit length.

9. Parallel currents attract and anti-parallel currents repel.

10. A planar loop carrying a current I, having N closely wound turns, and

an area A possesses a magnetic moment m where,

m = N I A

and the direction of m is given by the right-hand thumb rule : curl

the palm of your right hand along the loop with the fingers pointing

in the direction of the current. The thumb sticking out gives the
direction of m (and A)

When this loop is placed in a uniform magnetic field B, the force F on

it is:  F = 0

And the torque on it is,

τ = m × B

In a moving coil galvanometer, this torque is balanced by a counter-
torque due to a spring, yielding

kφ = NI AB

where φ  is the equilibrium deflection and k the torsion constant of

the spring.

11. A moving coil galvanometer can be converted into a ammeter by

introducing a shunt resistance r
s
, of small value in parallel. It can be

converted into a voltmeter by introducing a resistance of a large value

in series.
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Physical Quantity Symbol Nature Dimensions Units Remarks

Permeability of free µ
0

Scalar [MLT –2A–2] T m A–1 4π × 10–7 T m A–1

space

Magnetic Field B Vector [M T –2A–1] T (telsa)

Magnetic Moment m Vector [L2A] A m2 or J/T

Torsion Constant k   Scalar [M L2T –2]     N m rad–1 Appears in MCG

POINTS TO PONDER

1. Electrostatic field lines originate at a positive charge and terminate at a

negative charge or fade at infinity. Magnetic field lines always form

closed loops.

2. The discussion in this Chapter holds only for steady currents which do
not vary with time.

When currents vary with time Newton’s third law is valid only if momentum

carried by the electromagnetic field is taken into account.

3. Recall the expression for the Lorentz force,

F = q (v × B + E)

This velocity dependent force has occupied the attention of some of the

greatest scientific thinkers. If one switches to a frame with instantaneous

velocity v, the magnetic part of the force vanishes. The motion of the

charged particle is then explained by arguing that there exists an

appropriate electric field in the new frame. We shall not discuss the

details of this mechanism. However, we stress that the resolution of this
paradox implies that electricity and magnetism are linked phenomena

(electromagnetism) and that the Lorentz force expression does not imply

a universal preferred frame of reference in nature.

4. Ampere’s Circuital law is not independent of the Biot-Savart law. It

can be derived from the Biot-Savart law. Its relationship to the

Biot-Savart law is similar to the relationship between Gauss’s law and

Coulomb’s law.

EXERCISES

4.1 A circular coil of wire consisting of 100 turns, each of radius 8.0 cm
carries a current of 0.40 A. What is the magnitude of the magnetic
field B at the centre of the coil?

4.2 A long straight wire carries a current of 35 A. What is the magnitude
of the field B at a point 20 cm from the wire?

4.3 A long straight wire in the horizontal plane carries a current of 50 A

in north to south direction. Give the magnitude and direction of B
at a point 2.5 m east of the wire.
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4.4 A horizontal overhead power line carries a current of 90 A in east to
west direction. What is the magnitude and direction of the magnetic
field due to the current 1.5 m below the line?

4.5 What is the magnitude of magnetic force per unit length on a wire
carrying a current of 8 A and making an angle of 30º with the direction
of a uniform magnetic field of  0.15 T?

4.6 A 3.0 cm wire carrying a current of 10 A is placed inside a solenoid
perpendicular to its axis. The magnetic field inside the solenoid is
given to be 0.27 T. What is the magnetic force on the wire?

4.7 Two long and parallel straight wires A and B carrying currents of
8.0 A and 5.0 A in the same direction are separated by a distance of
4.0 cm. Estimate the force on a 10 cm section of wire A.

4.8 A closely wound solenoid 80 cm long has 5 layers of windings of 400
turns each. The diameter of the solenoid is 1.8 cm. If the current
carried is 8.0 A, estimate the magnitude of B inside the solenoid

near its centre.

4.9 A square coil of side 10 cm consists of 20 turns and carries a current
of 12 A. The coil is suspended vertically and the normal to the plane

of the coil makes an angle of 30º with the direction of a uniform
horizontal magnetic field of magnitude 0.80 T. What is the magnitude
of torque experienced by the coil?

4.10 Two moving coil meters, M
1
 and M

2
 have the following particulars:

R
1
 = 10 Ω,  N

1
 = 30,

A
1
 = 3.6 × 10–3 m2

, B
1
 = 0.25 T

R
2
 = 14 Ω,  N

2
 = 42,

A
2
 = 1.8 × 10–3 m2, B

2
 = 0.50 T

(The spring constants are identical for the two meters).

Determine the ratio of (a) current sensitivity and (b) voltage
sensitivity of M

2
 and M

1
.

4.11 In a chamber, a uniform magnetic field of 6.5 G (1 G = 10–4 T) is

maintained. An electron is shot into the field with a speed of
4.8 × 106 m s–1 normal to the field. Explain why the  path of the
electron is a circle. Determine the radius of the circular orbit.

(e = 1.5 × 10–19 C, m
e
 = 9.1×10–31 kg)

4.12 In Exercise 4.11 obtain the frequency of revolution of the electron in
its circular orbit. Does the answer depend on the speed of the

electron? Explain.

4.13 (a) A circular coil of 30 turns and radius 8.0 cm carrying a current
of 6.0 A is suspended vertically in a uniform horizontal magnetic

field of magnitude 1.0 T. The field lines make an angle of 60°
with the normal of the coil. Calculate the magnitude of the
counter torque that must be applied to prevent the coil from

turning.

(b) Would your answer change, if the circular coil in (a) were replaced
by a planar coil of some irregular shape that encloses the same

area? (All other particulars are also unaltered.)
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5.1  INTRODUCTION

Magnetic phenomena are universal in nature. Vast, distant galaxies, the

tiny invisible atoms, humans and beasts all are permeated through and

through with a host of magnetic fields from a variety of sources. The earth’s

magnetism predates human evolution. The word magnet is derived from

the name of an island in Greece called magnesia where magnetic ore

deposits were found, as early as 600 BC.

In the previous chapter we have learned that moving charges or electric

currents produce magnetic fields. This discovery, which was made in the

early part of the nineteenth century is credited to Oersted, Ampere, Biot

and Savart, among others.

In the present chapter, we take a look at magnetism as a subject in its

own right.

Some of the commonly known ideas regarding magnetism are:

(i) The earth behaves as a magnet with the magnetic field pointing

approximately from the geographic south to the north.

(ii) When a bar magnet is freely suspended, it points in  the north-south

direction. The tip which points to the geographic north is called the

north pole and the tip which points to the geographic south is called

the south pole of the magnet.

Chapter Five

MAGNETISM AND

MATTER
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(iii) There is a repulsive force when north poles ( or south poles ) of two

magnets are brought close together. Conversely, there is an attractive

force between the north pole of one magnet and the south pole of

the other.

(iv) We cannot isolate the north, or south pole of a magnet. If a bar magnet

is broken into two halves, we get two similar bar magnets with

somewhat weaker properties. Unlike electric charges, isolated magnetic

north and south poles known as magnetic monopoles do not exist.

(v) It is possible to make magnets out of iron and its alloys.

We begin with a description of a bar magnet and its behaviour in an

external magnetic field. We describe Gauss’s law of magnetism. We next

describe how materials can be classified on the basis of their magnetic

properties. We describe para-, dia-, and ferromagnetism.

5.2  T5.2  T5.2  T5.2  T5.2  THEHEHEHEHE B B B B BARARARARAR M M M M MAGNETAGNETAGNETAGNETAGNET

We begin our study by examining iron
filings sprinkled on a sheet of glass placed

over a short bar magnet. The arrangement
of iron filings is shown in Fig. 5.1.

     The pattern of iron filings suggests

that the magnet has two poles similar to
the positive and negative charge of an
electric dipole. As mentioned in the

introductory section, one pole is
designated the North pole and the other,
the South pole. When suspended freely,

these poles point approximately towards
the geographic north and south poles,
respectively. A similar pattern of iron

filings is observed around a current
carrying solenoid.

5.2.1  The magnetic field lines5.2.1  The magnetic field lines5.2.1  The magnetic field lines5.2.1  The magnetic field lines5.2.1  The magnetic field lines

The pattern of iron filings permits us to plot

the magnetic field lines*****. This is shown both
for the bar-magnet and the current-
carrying solenoid in  Fig. 5.2. For

comparison refer to the Chapter 1, Figure 1.14(d). Electric field lines of an
electric dipole are also displayed in Fig. 5.2(c). The magnetic field lines are a
visual and intuitive realisation of the magnetic field. Their properties are:

(i) The magnetic field lines of a magnet (or a solenoid) form continuous
closed loops. This is unlike the electric dipole where these field lines
begin from a positive charge and end on the negative charge or escape

to infinity.

***** In some textbooks the magnetic field lines are called magnetic lines of force.

This nomenclature is avoided since it can be confusing. Unlike electrostatics

the field lines in magnetism do not indicate the direction of the force on a

(moving) charge.

FIGUREFIGUREFIGUREFIGUREFIGURE 5.1 5.1 5.1 5.1 5.1 The arrangement
of iron filings surrounding a bar

magnet. The pattern mimics

magnetic field lines. The pattern
suggests that the bar magnet is

a magnetic dipole.
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(ii) The tangent to the field line at a given
point represents the direction of the net
magnetic field B at that point.

(iii) The larger the number of field lines
crossing per unit area, the stronger is
the magnitude of the magnetic field B.

In Fig. 5.2(a), B is larger around
region  ii  than in region  i  .

(iv) The magnetic field lines do not

intersect, for if they did, the direction
of the magnetic field would not be
unique at the point of intersection.

One can plot the magnetic field lines
in a variety of ways. One way is to place a
small magnetic compass needle at various

positions and note its orientation. This
gives us an idea of the magnetic field
direction at various points in space.

5.2.2  Bar magnet as an

equivalent solenoid

In the previous chapter, we have

explained how a current loop acts as a
magnetic dipole (Section 4.9). We
mentioned Ampere’s hypothesis that all

magnetic phenomena can be explained in
terms of circulating currents.

FIGURE 5.3 Calculation of (a) The axial field of a
finite solenoid in order to demonstrate its

similarity to that of a bar magnet. (b) A magnetic
needle in a uniform magnetic field B. The

arrangement may be used to determine either B

or the magnetic moment m of the needle.

FIGURE 5.2 The field lines of (a) a bar magnet, (b) a current-carrying finite solenoid and

(c) electric dipole. At large distances, the field lines are very similar. The curves
labelled  i  and ii are closed Gaussian surfaces.
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The resemblance of magnetic field lines for a bar magnet and a solenoid
suggest that a bar magnet may be thought of as a large number of

circulating currents in analogy with a solenoid. Cutting a bar magnet in
half is like cutting a solenoid. We get two smaller solenoids with weaker
magnetic properties. The field lines remain continuous, emerging from

one face of the solenoid and entering into the other face. One can test this
analogy by moving a small compass needle in the neighbourhood of a
bar magnet and a current-carrying finite solenoid and noting that the

deflections of the needle are similar in both cases.
To make this analogy more firm we may calculate the axial field of a

finite solenoid depicted in Fig. 5.3 (a). We can demonstrate that at large

distances this axial field resembles that of a bar magnet.

The magnitude of the field at point P due to the solenoid is

0

3

2

4

m
B

r

µ
π

= (5.1)

This is also the far axial magnetic field of a bar magnet which one may
obtain experimentally. Thus, a bar magnet and a solenoid produce similar
magnetic fields. The magnetic moment of a bar magnet is thus equal to

the magnetic moment of an equivalent solenoid that produces the same
magnetic field.

5.2.3  The dipole in a uniform magnetic field

Let’s place a small compass needle of known magnetic moment m allowing

it to oscillate in the magnetic field. This arrangement is shown in
Fig. 5.3(b).

The torque on the needle is [see Eq. (4.23)],

τττττ = m × B (5.2)
In magnitude τ = mB sinθ
Here τττττ  is restoring torque and θ is the angle between m and B.

An expression for magnetic potential energy can be obtained on lines
similar to  electrostatic potential energy.
The magnetic potential energy U

m
 is given by

U d
m

= ∫ τ θ θ( )

      = = −∫mB d mBsin cosθ θ θ

      = –m.B (5.3)
We have emphasised in Chapter 2 that the zero of potential energy

can be fixed at one’s convenience. Taking the constant of integration to be
zero means fixing the zero of potential energy at θ = 90°, i.e., when the
needle is perpendicular to the field. Equation (5.3) shows that potential

energy is minimum (= –mB) at θ = 0° (most stable position) and maximum
(= +mB) at θ = 180° (most unstable position).

Example 5.1
(a) What happens if a bar magnet is cut into two pieces: (i) transverse

to its length, (ii) along its length?

(b) A magnetised needle in a uniform magnetic field experiences a
torque but no net force. An iron nail near a bar magnet, however,
experiences a force of attraction in addition to a torque. Why?
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(c) Must every magnetic configuration have a north pole and a south
pole? What about the field due to a toroid?

(d) Two identical looking iron bars A and B are given, one of which
is definitely known to be magnetised. (We do not know which
one.) How would one ascertain whether or not both are

magnetised? If only one is magnetised, how does one ascertain
which one?  [Use nothing else but the bars A and B.]

Solution
(a) In either case, one gets two magnets, each with a north and

south pole.
(b) No force if the field is uniform. The iron nail experiences a non-

uniform field due to the bar magnet. There is induced magnetic
moment in the nail, therefore, it experiences both force and
torque. The net force is attractive because the induced south
pole (say) in the nail is closer to the north pole of magnet than
induced north pole.

(c) Not necessarily. True only if the source of the field has a net
non-zero magnetic moment. This is not so for a toroid or even for
a straight infinite conductor.

(d) Try to bring different ends of the bars closer. A repulsive force in
some situation establishes that both are magnetised. If it is
always attractive, then one of them is not magnetised. In a bar
magnet the intensity of the magnetic field is the strongest at the
two ends (poles) and weakest at the central region. This fact
may be used to  determine whether A or B is the magnet. In this
case, to see which one of the two bars is a magnet, pick up one,
(say, A) and lower one of its ends; first on one of the ends of the
other (say, B), and then on the middle of B. If you notice that in

the middle of B, A experiences no force, then B is magnetised. If
you do not notice any change from the end to the middle of B,

then A is magnetised.

5.2.4  The electrostatic analog

Comparison of Eqs. (5.1), (5.2) and (5.3) with the corresponding equations

for electric dipole (Chapter 1), suggests that magnetic field at large
distances due to a bar magnet of magnetic moment m can be obtained
from the equation for electric field due to an electric dipole of dipole moment

p, by making the following replacements:

→E B , →p m , 
0

0

1

4 4

µ
ε

→
π π

In particular, we can write down the equatorial field (B
E
) of a bar magnet

at a distance r, for r >> l, where l is the size of the magnet:

0

3
4

E
r

µ
= −

π
m

B (5.4)

Likewise, the axial field (B
A
) of a bar magnet for r >> l is:

0

3

2

4
A

r

µ
=

π
m

B (5.5)
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Equation (5.5) is just Eq. (5.1) in the vector form. Table 5.1 summarises

the analogy between electric and magnetic dipoles.

Electrostatics Magnetism

1/ε
0

µ
0

Dipole moment p m

Equatorial Field for a short dipole –p/4πε
0
r

3 – µ
0
 m / 4π r3

Axial Field for a short dipole 2p/4πε
0
r

3 µ
0
 2m / 4π r3

External Field: torque p × E m × B

External Field: Energy –p.E –m.B

TABLE 5.1 THE DIPOLE ANALOGY
 E

X
A
M

P
L
E
 5

.2

Example 5.2  Figure 5.4 shows a small magnetised needle P placed

at a point O. The arrow shows the direction of its magnetic moment.
The other arrows show different positions (and orientations of the
magnetic moment) of another identical magnetised needle Q.

(a) In which configuration the system is not in equilibrium?
(b) In which configuration is the system in (i) stable, and (ii) unstable

equilibrium?

(c) Which configuration corresponds to the lowest potential energy
among all the configurations shown?

FIGURE 5.4

Solution

Potential energy of the configuration arises due to the potential energy of
one dipole (say, Q) in the magnetic field due to other (P). Use the result
that the field due to P is given by the expression [Eqs. (5.4) and (5.5)]:

0 P

P 3
4 r

µ
π

= − m
B      (on the normal bisector)

0 P
P 3

2

4 r

µ
π

=
m

B      (on the axis)

where m
P
 is the magnetic moment of the dipole P.

Equilibrium is stable when m
Q
 is parallel to B

P
, and unstable when it

is anti-parallel to B
P
.
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Karl Friedrich Gauss
(1777 – 1855) He was a

child prodigy and was gifted
in mathematics, physics,
engineering, astronomy

and even land surveying.
The properties of numbers
fascinated him, and in his

work he anticipated major
mathematical development
of later times. Along with

Wilhelm Welser, he built the
first electric telegraph in
1833. His mathematical

theory of curved surface
laid the foundation for the
later work of Riemann.

For instance for the configuration Q
3
 for which Q is along the

perpendicular bisector of the dipole P, the magnetic moment of Q is
parallel to the magnetic field at the position 3. Hence Q

3
 is stable.

Thus,

(a) PQ
1
 and PQ

2

(b) (i) PQ
3
, PQ

6
 (stable); (ii) PQ

5
, PQ

4
 (unstable)

(c) PQ
6

5.3  MAGNETISM AND GAUSS’S LAW

In Chapter 1, we studied Gauss’s law for electrostatics.

In Fig 5.2(c), we see that for a closed surface represented

by  i , the number of lines leaving the surface is equal to

the number of lines entering it. This is consistent with the

fact that no net charge is enclosed by the surface. However,

in the same figure, for the closed surface ii , there is a net

outward flux, since it does include a net (positive) charge.

The situation is radically different for magnetic fields
which are continuous and form closed loops. Examine the

Gaussian surfaces represented by  i  or  ii  in Fig 5.2(a) or
Fig. 5.2(b). Both cases visually demonstrate that the
number of magnetic field lines leaving the surface is

balanced by the number of lines entering it. The net
magnetic flux is zero for both the surfaces. This is true
for any closed surface.

FIGURE 5.5

Consider a small vector area element ∆S of a closed surface S as in
Fig. 5.5. The magnetic flux through ÄS is defined as ∆φ

B
 = B.∆S, where B

is the field  at ∆S. We divide S into many small area elements and calculate

the individual flux through each. Then, the net flux φ
B
 is,

φ φB B

all all

= = =∑ ∑∆ ∆
’ ’ ’ ’

B S. 0 (5.6)

where ‘all’ stands for ‘all area elements ∆S′. Compare this with the Gauss’s
law of electrostatics. The flux through a closed surface in that case is

given by

E S.∆ =∑ q

ε0

 E
X

A
M

P
L
E
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where q is the electric charge enclosed by the surface.
The difference between the Gauss’s law of magnetism and that for

electrostatics is a reflection of the fact that isolated magnetic poles (also
called monopoles) are not known to exist. There are no sources or sinks
of B; the simplest magnetic element is a dipole or a current loop. All

magnetic phenomena can be explained in terms of an arrangement of
dipoles and/or current loops.
Thus, Gauss’s law for magnetism is:

The net magnetic flux through any closed surface is zero.

Example 5.3  Many of the diagrams given in Fig. 5.6 show magnetic
field lines (thick lines in the figure) wrongly. Point out what is wrong

with them. Some of them may describe electrostatic field lines correctly.
Point out which ones.

FIGURE 5.6
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Solution

(a) Wrong. Magnetic field lines can never emanate from a point, as
shown in figure. Over any closed surface, the net flux of B must
always be zero, i.e., pictorially as many field lines should seem to

enter the surface as the number of lines leaving it. The field lines
shown, in fact, represent electric field of a long positively charged
wire. The correct magnetic field lines are circling the straight

conductor, as described in Chapter 4.
(b) Wrong. Magnetic field lines (like electric field lines) can never cross

each other, because otherwise the direction of field at the point of
intersection is ambiguous. There is further error in the figure.
Magnetostatic field lines can never form closed loops around empty
space. A closed loop of static magnetic field line must enclose a
region across which a current is passing. By contrast, electrostatic
field lines can never form closed loops, neither in empty space,
nor when the loop encloses charges.

(c) Right. Magnetic lines are completely confined within a toroid.
Nothing wrong here in field lines forming closed loops, since each
loop encloses a region across which a current passes. Note, for
clarity of figure, only a few field lines within the toroid have been
shown. Actually, the entire region enclosed by the windings
contains magnetic field.

(d) Wrong. Field lines due to a solenoid at its ends and outside cannot
be so completely straight and confined; such a thing violates
Ampere’s law. The lines should curve out at both ends, and meet
eventually to form closed loops.

(e) Right. These are field lines outside and inside a bar magnet. Note
carefully the direction of field lines inside. Not all field lines emanate
out of a north pole (or converge into a south pole). Around both
the N-pole, and the S-pole, the net flux of the field is zero.

(f ) Wrong. These field lines cannot possibly represent a magnetic field.
Look at the upper region. All the field lines seem to emanate out of
the shaded plate. The net flux through a surface surrounding the
shaded plate is not zero. This is impossible for a magnetic field.
The given field lines, in fact, show the electrostatic field lines
around a positively charged upper plate and a negatively charged
lower plate. The difference between Fig. [5.6(e) and (f )]  should be
carefully grasped.

(g) Wrong. Magnetic field lines between two pole pieces cannot be
precisely straight at the ends. Some fringing of lines is inevitable.
Otherwise, Ampere’s law is violated. This is also true for electric
field lines.

Example 5.4
(a) Magnetic field lines show the direction (at every point) along which

a small magnetised needle aligns (at the point). Do the magnetic
field lines also represent the lines of force on a moving charged
particle at every point?

(b) If magnetic monopoles existed, how would the Gauss’s law of
magnetism be modified?

(c) Does a bar magnet exert a torque on itself due to its own field?

Does one element of a current-carrying wire exert a force on another
element of the same wire?
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(d) Magnetic field arises due to charges in motion. Can a system
have magnetic moments even though its net charge is zero?

Solution
(a) No. The magnetic force is always normal to B (remember magnetic

force = qv × B). It is misleading to call magnetic field lines as lines

of force.
(b) Gauss’s law of magnetism states that the flux of B through any

closed surface is always zero B s.∆ =∫ 0
s

.

If monopoles existed, the right hand side would be equal to the
monopole (magnetic charge) q

m
 enclosed by S. [Analogous to

Gauss’s law of electrostatics, B s.∆ =∫ µ0qm
S

 where q
m
 is the

(monopole) magnetic charge enclosed by S .]
(c) No. There is no force or torque on an element due to the field

produced by that element itself. But there is a force (or torque)
on an element of the same wire. (For the special case of a straight
wire, this force is zero.)

(d) Yes. The average of the charge in the system may be zero. Yet,
the mean of the magnetic moments due to various current loops
may not be zero. We will come across such examples in connection

with paramagnetic material where atoms have net dipole moment

through their net charge is zero.

5.4  MAGNETISATION AND MAGNETIC INTENSITY

The earth abounds with a bewildering variety of elements and compounds.

In addition, we have been synthesising new alloys, compounds and even
elements. One would like to classify the magnetic properties of these
substances. In the present section, we define and explain certain terms

which will help us to carry out this exercise.
We have seen that a circulating electron in an atom has a magnetic

moment. In a bulk material, these moments add up vectorially and they

can give a net magnetic moment which is non-zero. We define
magnetisation M of a sample to be equal to its net magnetic moment per
unit volume:

net

V
=

m
M (5.7)

M is a vector with dimensions L–1 A and is measured in a units of A m–1.
Consider a long solenoid of n turns per unit length and carrying a

current I. The magnetic field in the interior of the solenoid was shown to
be given by

B
0
 = µ

0
 nI (5.8)

If the interior of the solenoid is filled with a material with non-zero

magnetisation, the field inside the solenoid will be greater than B
0
. The

net B field in the interior of the solenoid may be expressed as

B = B
0
 + B

m
(5.9)
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where B
m
 is the field contributed by the material core. It turns out that

this additional field B
m
 is proportional to the magnetisation M of the

material and is expressed as

B
m
 = µ

0
M (5.10)

where µ
0
 is the same constant (permittivity of vacuum) that appears in

Biot-Savart’s law.
It is convenient to introduce another vector field H, called the magnetic

intensity, which is defined by

0

–
µ

=
B

H M (5.11)

where H has the same dimensions as M and is measured in units of A m–1.
Thus, the total magnetic field B is written as

B = µ
0
 (H + M) (5.12)

We repeat our defining procedure. We have partitioned the contribution

to the total magnetic field inside the sample into two parts: one, due to

external factors such as the current in the solenoid. This is represented

by H. The other is due to the specific nature of the magnetic material,

namely M. The latter quantity can be influenced by external factors. This

influence is mathematically expressed as

χ=M H (5.13)

where χ , a dimensionless quantity, is appropriately called the magnetic

susceptibility. It is a measure of how a magnetic material responds to an

external field. χ is small and positive for materials, which are called

paramagnetic. It is small and negative for materials, which are termed

diamagnetic. In the latter case M and H are opposite in direction. From

Eqs. (5.12) and (5.13) we obtain,

0(1 )µ χ= +B H (5.14)

= µ
0 

µ
r 
H

=  µ H (5.15)

where µ
r
= 1 + χ, is a dimensionless quantity called the relative magnetic

permeability of the substance. It is the analog of the dielectric constant in

electrostatics. The magnetic permeability of the substance is µ and it has

the same dimensions and units as µ
0
;

µ = µ
0
µ

r
 = µ

0
 (1+χ).

The three quantities χ, µ
r
 and µ are interrelated and only one of

them is independent. Given one, the other two may be easily determined.

Example 5.5 A solenoid has a core of a material with relative

permeability 400. The windings of the solenoid are insulated from the
core and carry a current of 2A. If the number of turns is 1000 per
metre, calculate (a) H, (b) M, (c) B and (d) the magnetising current I

m
.
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Solution
(a) The field H is dependent of the material of the core, and is

H = nI = 1000 × 2.0 = 2 ×103 A/m.
(b) The magnetic field B is given by

B = µ
r
 µ

0
 H

   = 400 × 4π ×10–7 (N/A2) × 2 × 103 (A/m)
   = 1.0 T

(c) Magnetisation is given by

M = (B– µ
0
 H )/ µ

0

    = (µ
r
 µ

0
 H–µ

0
 H )/µ

0
 = (µ

r
 – 1)H = 399 × H

     ≅ 8 × 105 A/m

(d) The magnetising current I
M
 is the additional current that needs

to be passed through the windings of the solenoid in the absence
of the core which would give a B value as in the presence of the

core. Thus B = µ
r
 n (I + I

M
). Using I = 2A, B = 1 T, we get I

M
 = 794 A.

5.5 MAGNETIC PROPERTIES OF MATERIALS

The discussion in the previous section helps us to classify materials as

diamagnetic, paramagnetic or ferromagnetic. In terms of the susceptibility

χ, a material is diamagnetic if χ is negative, para- if χ is positive and small,

and ferro- if χ is large and positive.

A glance at Table 5.2 gives one a better feeling for these materials.

Here ε is a small positive number introduced to quantify paramagnetic

materials. Next, we describe these materials in some detail.

TABLE 5.2

Diamagnetic Paramagnetic Ferromagnetic

–1 ≤ χ < 0 0 < χ <  ε χ >> 1

0 ≤ µ
r
 < 1 1< µ

r
 < 1+ ε µ

r
 >> 1

µ < µ
0

µ > µ
0

µ >> µ
0

5.5.1  Diamagnetism

Diamagnetic substances are those which have tendency to move from
stronger to the weaker part of the external magnetic field. In other words,
unlike the way a magnet attracts metals like iron, it would repel a
diamagnetic substance.

Figure 5.7(a) shows a bar of diamagnetic material placed in an external
magnetic field. The field lines are repelled or expelled and the field inside
the material is reduced. In most cases, this reduction is slight, being one
part in 105. When placed in a non-uniform magnetic field, the bar will tend
to move from high to low field.

FIGURE 5.7
Behaviour of

magnetic field lines

near a
(a) diamagnetic,
(b) paramagnetic

substance.
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The simplest explanation for diamagnetism is as follows. Electrons in
an atom orbiting around nucleus possess orbital angular momentum.
These orbiting electrons are equivalent to current-carrying loop and thus
possess orbital magnetic moment. Diamagnetic substances are the ones
in which resultant magnetic moment in an atom is zero. When magnetic
field is applied, those electrons having orbital magnetic moment in the
same direction slow down and those in the opposite direction speed up.
This happens due to induced current in accordance with Lenz’s law which
you will study in Chapter 6. Thus, the substance develops a net magnetic
moment in direction opposite to that of the applied field and hence repulsion.

Some diamagnetic materials are bismuth, copper, lead, silicon,

nitrogen (at STP), water and sodium chloride. Diamagnetism is present
in all the substances. However, the effect is so weak in most cases that it

gets shifted by other effects like paramagnetism, ferromagnetism, etc.

The most exotic diamagnetic materials are superconductors. These

are metals, cooled to very low temperatures which exhibits both perfect
conductivity and perfect diamagnetism. Here the field lines are completely

expelled!  χ = –1 and µ
r
 = 0. A superconductor repels a magnet and (by

Newton’s third law) is repelled by the magnet. The phenomenon of perfect

diamagnetism in superconductors is called the Meissner effect, after the
name of its discoverer. Superconducting magnets can be gainfully

exploited in variety of situations, for example, for running magnetically

levitated superfast trains.

5.5.2  Paramagnetism

Paramagnetic substances are those which get weakly magnetised when
placed in an external magnetic field. They have tendency to move from a

region of weak magnetic field to strong magnetic field, i.e., they get weakly
attracted to a magnet.

The individual atoms (or ions or molecules) of a paramagnetic material

possess a permanent magnetic dipole moment of their own. On account
of the ceaseless random thermal motion of the atoms, no net magnetisation
is seen. In the presence of an external field B

0
, which is strong enough,

and at low temperatures, the individual atomic dipole moment can be
made to align and point in the same direction as B

0
. Figure 5.7(b) shows

a bar of paramagnetic material placed in an external field. The field lines

gets concentrated inside the material, and the field inside is enhanced. In
most cases, this enhancement is slight, being one part in 105. When placed
in a non-uniform magnetic field, the bar will tend to move from weak field

to strong.
Some paramagnetic materials are aluminium, sodium, calcium,

oxygen (at STP) and copper chloride. For a paramagnetic material both χ

and µ
r
 depend not only on the material, but also (in a simple fashion) on

the sample temperature. As the field is increased or the temperature is
lowered, the magnetisation increases until it reaches the saturation value

at which point all the dipoles are perfectly aligned with the field.
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5.5.3  Ferromagnetism

Ferromagnetic substances are those which gets strongly magnetised when

placed in an external magnetic field. They have strong tendency to move
from a region of weak magnetic field to strong magnetic field, i.e., they get

strongly attracted to a magnet.

The individual atoms (or ions or molecules) in a ferromagnetic material
possess a dipole moment as in a paramagnetic material. However, they
interact with one another in such a way that they spontaneously align

themselves in a common direction over a macroscopic volume called
domain. The explanation of this cooperative effect requires quantum
mechanics and is beyond the scope of this textbook. Each domain has a

net magnetisation. Typical domain size is 1mm and the domain contains
about 1011 atoms. In the first instant, the magnetisation varies randomly
from domain to domain and there is no bulk magnetisation. This is shown

in Fig. 5.8(a). When we apply an external magnetic field B
0
, the domains

orient themselves in the direction of B
0
 and simultaneously the domain

oriented in the direction of B
0
 grow in size. This existence of domains and

their motion in B
0
 are not speculations. One may observe this under a

microscope after sprinkling a liquid suspension of powdered
ferromagnetic substance of samples. This motion of suspension can be

observed. Fig. 5.8(b) shows the situation when the domains have aligned
and amalgamated to form a single ‘giant’ domain.

 Thus, in a ferromagnetic material the field lines are highly

concentrated. In non-uniform magnetic field, the sample tends to move
towards the region of high field. We may wonder as to what happens
when the external field is removed. In some ferromagnetic materials the

magnetisation persists. Such materials are called hard magnetic materials
or hard ferromagnets. Alnico, an alloy of iron, aluminium, nickel, cobalt
and copper, is one such material. The naturally occurring lodestone is

another. Such materials form permanent magnets to be used among other
things as a compass needle. On the other hand, there is a class of
ferromagnetic materials in which the magnetisation disappears on removal

of the external field. Soft iron is one such material. Appropriately enough,
such materials are called soft ferromagnetic materials. There are a number
of elements, which are ferromagnetic: iron, cobalt, nickel, gadolinium,

etc. The relative magnetic permeability is >1000!
The ferromagnetic property depends on temperature. At high enough

temperature, a ferromagnet becomes a paramagnet. The domain structure

disintegrates with temperature. This disappearance of magnetisation with
temperature is gradual.

FIGURE 5.8
(a) Randomly

oriented domains,

(b) Aligned domains.

SUMMARY

1. The science of magnetism is old. It has been known since ancient times
that magnetic materials tend to point in the north-south direction; like
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magnetic poles repel and unlike ones attract; and cutting a bar magnet

in two leads to two smaller magnets. Magnetic poles cannot be isolated.

2. When a bar magnet of dipole moment m is placed in a uniform magnetic

field B,
     (a) the force on it is zero,

     (b) the torque on it is m × B,

     (c) its potential energy is –m.B, where we choose the zero of energy at

the orientation when m is perpendicular to B.

3. Consider a bar magnet of size l and magnetic moment m, at a distance

r from its mid-point, where r >>l, the magnetic field B due to this bar
is,

0

32 r

µ
=

π
m

B     (along axis)

   = 0

3
–

4 r

µ
π
m

    (along equator)

4. Gauss’s law for magnetism states that the net magnetic flux through

any closed surface is zero

0�

�

� � ��
S

B Si
B

all area

elements

5. Consider a material placed in an external magnetic field B
0
. The

magnetic intensity is defined as,

0

0µ
=

B
H

The magnetisation M of the material is its dipole moment per unit volume.

The magnetic field B in the material is,

      B = µ0 (H + M)

6. For a linear material M = χ H. So that B = µ H and χ is called the

magnetic susceptibility of the material. The three quantities, χ, the

relative magnetic permeability µ
r
, and the magnetic permeability µ  are

related as follows:

µ = µ
0
 µ

r

      µ
r
 = 1+ χ

7. Magnetic materials are broadly classified as: diamagnetic, paramagnetic,

and ferromagnetic. For diamagnetic materials χ is negative and small
and for paramagnetic materials it is positive and small. Ferromagnetic

materials have large χ and are characterised by non-linear relation

between B and H.

8. Substances, which at room temperature, retain their ferromagnetic

property for a long period of time are called permanent magnets.
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POINTS TO PONDER

1. A satisfactory understanding of magnetic phenomenon in terms of moving

charges/currents was arrived at after 1800 AD. But technological

exploitation of the directional properties of magnets predates this scientific

understanding by two thousand years. Thus, scientific understanding is

not a necessary condition for engineering applications. Ideally, science

and engineering go hand-in-hand, one leading and assisting the other in
tandem.

2. Magnetic monopoles do not exist. If you slice a magnet in half, you get

two smaller magnets. On the other hand, isolated positive and negative
charges exist. There exists a smallest unit of charge, for example, the

electronic charge with value |e| = 1.6 ×10
–19 C. All other charges are

integral multiples of this smallest unit charge. In other words, charge is

quantised. We do not know why magnetic monopoles do not exist or why

electric charge is quantised.

3. A consequence of the fact that magnetic monopoles do not exist is that

the magnetic field lines are continuous and form closed loops. In contrast,

the electrostatic lines of force begin on a positive charge and terminate

on the negative charge (or fade out at infinity).

4. A miniscule difference in the value of χ, the magnetic susceptibility, yields

radically different behaviour: diamagnetic versus paramagnetic. For

diamagnetic materials χ = –10–5 whereas χ = +10–5 for paramagnetic
materials.

Physical quantity Symbol Nature Dimensions Units Remarks

Permeability of µ
0

Scalar [MLT–2 A–2] T m A–1 µ
0
/4π = 10–7

free space

Magnetic field, B Vector [MT–2 A–1] T (tesla) 104 G (gauss) = 1 T
Magnetic induction,
Magnetic flux density

Magnetic moment m Vector [L–2 A] A m2

Magnetic flux φ
B

Scalar [ML2T–2 A–1] W (weber) W = T m2

Magnetisation M Vector [L–1 A] A m–1 Magnetic moment

Volume

Magnetic intensity H Vector [L–1 A] A m–1 B = µ
0
 (H + M)

Magnetic field
strength

Magnetic χ Scalar - - M = χH

susceptibility

Relative magnetic µ
r

Scalar - - B = µ
0 

µ
r
 H

permeability

Magnetic permeability µ Scalar [MLT–2 A–2] T m A–1 µ = µ
0 

µ
r

N A–2 B = µ H
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5. There exists a perfect diamagnet, namely, a superconductor. This is a

metal at very low temperatures. In this case χ = –1, µ
r
 = 0, µ = 0. The

external magnetic field is totally expelled. Interestingly, this material is

also a perfect conductor. However, there exists no classical theory which
ties these two properties together. A quantum-mechanical theory by

Bardeen, Cooper, and Schrieffer (BCS theory) explains these effects. The

BCS theory was proposed in1957 and was eventually recognised by a Nobel

Prize in physics in 1970.

6. Diamagnetism is universal. It is present in all materials. But it

is weak and hard to detect if the substance is para- or ferromagnetic.

7. We have classified materials as diamagnetic, paramagnetic, and

ferromagnetic. However, there exist additional types of magnetic material

such as ferrimagnetic, anti-ferromagnetic, spin glass, etc. with properties

which are exotic and mysterious.

EXERCISES

5.1 A short bar magnet placed with its axis at 30° with a uniform external
magnetic field of 0.25 T experiences a torque of magnitude equal to

4.5 × 10
–2 J. What is the magnitude of magnetic moment of the magnet?

5.2 A short bar magnet of magnetic moment m = 0.32 JT –1 is placed in a
uniform magnetic field of 0.15 T. If the bar is free to rotate in the

plane of the field, which orientation would correspond to its (a) stable,
and (b) unstable equilibrium? What is the potential energy of the
magnet in each case?

5.3 A closely wound solenoid of 800 turns and area of cross section
2.5 × 10

–4
 m2 carries a current of 3.0 A. Explain the sense in which

the solenoid acts like a bar magnet. What is its associated magnetic

moment?

5.4 If the solenoid in Exercise 5.5 is free to turn about the vertical
direction and a uniform horizontal magnetic field of 0.25 T is applied,

what is the magnitude of torque on the solenoid when its axis makes
an angle of 30° with the direction of applied field?

5.5 A bar magnet of magnetic moment 1.5 J T –1 lies aligned with the

direction of a uniform magnetic field of 0.22 T.

(a) What is the amount of work required by an external torque to
turn the magnet so as to align its magnetic moment: (i) normal

to the field direction, (ii) opposite to the field direction?
(b) What is the torque on the magnet in cases (i) and (ii)?

5.6 A closely wound solenoid of 2000 turns and area of cross-section

1.6 × 10
–4 

m
2,  carrying a current of 4.0 A, is suspended through its

centre allowing it to turn in a horizontal plane.
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(a) What is the magnetic moment associated with the solenoid?
(b) What is the force and torque on the solenoid if a uniform

horizontal magnetic field of 7.5 × 10
–2

 T is set up at an angle of

30° with the axis of the solenoid?

5.7 A short bar magnet has a magnetic moment of 0.48 J T –1. Give the
direction and magnitude of the magnetic field produced by the magnet

at a distance of 10 cm from the centre of the magnet on (a) the axis,
(b) the equatorial lines (normal bisector) of the magnet.
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6.1  INTRODUCTION

Electricity and magnetism were considered separate and unrelated

phenomena for a long time. In the early decades of the nineteenth century,

experiments on electric current by Oersted, Ampere and a few others
established the fact that electricity and magnetism are inter-related. They

found that moving electric charges produce magnetic fields. For example,

an electric current deflects a magnetic compass needle placed in its vicinity.
This naturally raises the questions like: Is the converse effect possible?

Can moving magnets produce electric currents? Does the nature permit

such a relation between electricity and magnetism? The answer is
resounding yes! The experiments of Michael Faraday in England and

Joseph Henry in USA, conducted around 1830, demonstrated

conclusively that electric currents were induced in closed coils when
subjected to changing magnetic fields. In this chapter, we will study the

phenomena associated with changing magnetic fields and understand

the underlying principles. The phenomenon in which electric current is
generated by varying magnetic fields is appropriately called

electromagnetic induction.

When Faraday first made public his discovery that relative motion
between a bar magnet and a wire loop produced a small current in the

latter, he was asked, “What is the use of it?” His reply was: “What is the
use of a new born baby?” The phenomenon of electromagnetic induction

Chapter Six

ELECTROMAGNETIC

INDUCTION
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is not merely of theoretical or academic interest but also
of practical utility. Imagine a world where there is no
electricity – no electric lights, no trains, no telephones and
no personal computers. The pioneering experiments of
Faraday and Henry have led directly to the development
of modern day generators and transformers. Today’s
civilisation owes its progress to a great extent to the
discovery of electromagnetic induction.

6.2 THE EXPERIMENTS OF FARADAY AND

HENRY

The discovery and understanding of electromagnetic
induction are based on a long series of experiments carried
out by Faraday and Henry. We shall now describe some
of these experiments.

Experiment 6.1

Figure 6.1 shows a coil C
1
* connected to a galvanometer

G. When the North-pole of a bar magnet is pushed
towards the coil, the pointer in the galvanometer deflects,
indicating  the presence of electric  current in the coil. The
deflection lasts as long as the bar magnet is in motion.
The galvanometer does not show any deflection when the
magnet is held stationary. When the magnet is pulled
away from the coil, the galvanometer shows deflection in
the opposite direction, which indicates reversal of the
current’s direction. Moreover, when the South-pole of
the bar magnet is moved towards or away from the
coil, the deflections in the galvanometer are opposite
to that observed with the North-pole for similar
movements. Further, the deflection (and hence current)
is found to be larger when the magnet is pushed
towards or pulled away from the coil faster. Instead,
when the bar magnet is held fixed and the coil C

1
 is

moved towards or away from the magnet, the same
effects are observed. It shows that it is the relative

motion between the magnet and the coil that is

responsible for generation (induction) of electric

current in the coil.

Experiment 6.2

In Fig. 6.2 the bar magnet is replaced by a second coil
C

2
 connected to a battery. The steady current in the

coil C
2
 produces a steady magnetic field. As coil C

2
 is

* Wherever the term ‘coil’ or ‘loop’ is used, it is assumed that they are made up of

conducting material and are prepared using wires which are coated with insulating

material.

FIGURE 6.1 When the bar magnet is
pushed towards the coil, the pointer in

the galvanometer G deflects.

Josheph Henry [1797 –
1878] American experimental
physicist, professor at
Princeton University and first
director of the Smithsonian
Institution. He made important
improvements in electro-
magnets by winding coils of
insulated wire around iron
pole pieces and  invented an
electromagnetic motor and a
new, efficient telegraph. He
discoverd self-induction and
investigated how currents in
one circuit induce currents in
another.
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moved towards the coil C
1
, the galvanometer shows a

deflection. This indicates that electric current is induced in
coil C

1
. When C

2
 is moved away, the galvanometer shows a

deflection again, but this time in the opposite direction. The
deflection lasts as long as coil C

2
 is in motion. When the coil

C
2 
is held fixed and C

1
 is moved, the same effects are observed.

Again, it is the relative motion between the coils that induces

the electric current.

Experiment 6.3

The above two experiments involved relative motion between
a magnet and a coil and between two coils, respectively.
Through another experiment, Faraday showed that this
relative motion is not an absolute requirement. Figure 6.3
shows two coils C

1
 and C

2
 held stationary. Coil C

1
 is connected

to galvanometer G while the second coil C
2
 is connected to a

battery through a tapping key K.

FIGURE 6.2  Current is
induced in coil C

1
 due to motion

of the current carrying coil C
2
.

FIGURE 6.3 Experimental set-up for Experiment 6.3.

It is observed that the galvanometer shows a momentary deflection
when the tapping key K is pressed. The pointer in the galvanometer returns
to zero immediately. If the key is held pressed continuously, there is no
deflection in the galvanometer. When the key is released, a momentory
deflection is observed again, but in the opposite direction. It is also observed
that the deflection increases dramatically when an iron rod is inserted
into the coils along their axis.

6.3  MAGNETIC FLUX

Faraday’s great insight lay in discovering a simple mathematical relation
to explain the series of experiments he carried out on electromagnetic
induction. However, before we state and appreciate his laws, we must get
familiar with the notion of magnetic flux, F 

B
. Magnetic flux is defined in

the same way as electric flux is defined in Chapter 1. Magnetic flux through
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a plane of area A placed in a uniform magnetic field B (Fig. 6.4) can
be written as

F 
B
  = B . A = BA cos q (6.1)

where q   is angle between B and A. The notion of the area as a vector
has been discussed earlier in Chapter 1. Equation (6.1) can be
extended to curved surfaces and nonuniform fields.

If the magnetic field has different magnitudes and directions at
various parts of a surface as shown in Fig. 6.5, then the magnetic
flux through the surface is given by

1 1 2 2
d dΦ = + +B A B A. .

B
... = B A.i id

all

∑ (6.2)

where ‘all’ stands for summation over all the area elements dA
i

comprising the surface and B
i
 is the magnetic field at the area element

dA
i
. The SI unit of magnetic flux is weber (Wb) or tesla meter

squared (T m2). Magnetic flux is a scalar quantity.

6.4  FARADAY’S LAW OF INDUCTION

From the experimental observations, Faraday arrived at a

conclusion that an emf is induced in a coil when magnetic flux

through the coil changes with time. Experimental observations

discussed in Section 6.2 can be explained using this concept.

The motion of a magnet towards or away from coil C
1
 in

Experiment 6.1 and moving a current-carrying coil C
2
 towards

or away from coil C
1
 in Experiment 6.2, change the magnetic

flux associated with coil C
1
.  The change in magnetic flux induces

emf in coil C
1
. It was this induced emf which caused electric

current to flow in coil C
1 

and through the galvanometer. A

plausible explanation for the observations of Experiment 6.3 is

as follows: When the tapping key K is pressed, the current in

coil C
2
 (and the resulting magnetic field) rises from zero to a

maximum value in a short time. Consequently, the magnetic

flux through the neighbouring coil C
1
 also increases. It is the change in

magnetic flux through coil C
1
 that produces an induced emf in coil C

1
.

When the key is held pressed, current in coil C
2
 is constant. Therefore,

there is no change in the magnetic flux through coil C
1
 and the current in

coil C
1
 drops to zero. When the key is released, the current in C

2
 and the

resulting magnetic field decreases from the maximum value to zero in a

short time. This results in a decrease in magnetic flux through coil C
1

and hence again induces an electric current in coil C
1
*. The common

point in all these observations is that the time rate of change of magnetic

flux through a circuit induces emf in it. Faraday stated experimental

observations in the form of a law called Faraday’s law of electromagnetic

induction. The law is stated below.

FIGURE 6.4 A plane of
surface area A placed in a
uniform magnetic field B.

FIGURE 6.5 Magnetic field B
i

at the i th area element. dA
i

represents area vector of the
i th area element.

* Note that sensitive electrical instruments in the vicinity of an electromagnet

can be damaged due to the induced emfs (and the resulting currents)  when the

electromagnet is turned on or off.
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The magnitude of the induced emf in a circuit is equal

to the time rate of change of magnetic flux through the

circuit.

Mathematically, the induced emf is given by

d
–

d
B

t

Φε = (6.3)

The negative sign indicates the direction of e  and hence

the direction of current in a closed loop. This will be

discussed in detail in the next section.
In the case of a closely wound coil of N turns, change

of flux associated with each turn, is the same. Therefore,

the expression for the total induced emf is given by

d
–

d
BN
t

Φε = (6.4)

The induced emf can be increased by increasing the

number of turns N of a closed coil.

From Eqs. (6.1) and (6.2), we see that the flux can be

varied by changing any one or more of the terms B, A and

q. In Experiments 6.1 and 6.2 in Section 6.2, the flux is
changed by varying B. The flux can also be altered by

changing the shape of a coil (that is, by shrinking it or

stretching it) in a magnetic field, or rotating a coil in a
magnetic field such that the angle q  between B and A

changes. In these cases too, an emf is induced in the

respective coils.

Example 6.1  Consider Experiment 6.2. (a) What would you do to obtain

a large deflection of the galvanometer? (b) How would you demonstrate

the presence of an induced current in the absence of a galvanometer?

Solution

(a) To obtain a large deflection, one or more of the following steps can

be taken:  (i) Use a rod made of soft iron inside the coil C
2
, (ii) Connect

the coil to a powerful battery, and (iii) Move the arrangement rapidly

towards the test coil C
1
.

(b) Replace the galvanometer by a small bulb, the kind one finds in a
small torch light. The relative motion between the two coils will cause

the bulb to glow and thus demonstrate the presence of an induced

current.

In experimental physics one must learn to innovate. Michael Faraday

who is ranked as one of the best experimentalists ever, was legendary

for his innovative skills.

Example 6.2 A square loop of side 10 cm and resistance 0.5 W is
placed vertically in the east-west  plane. A uniform magnetic field of

0.10 T is set up across the plane in the north-east direction. The

magnetic field is decreased to zero in 0.70 s at a steady rate. Determine
the magnitudes of induced emf and current during this time-interval.

Michael Faraday  [1791–
1867] Faraday made
numerous contributions to
science, viz., the discovery
of electromagnetic
induction, the laws of
electrolysis, benzene, and
the fact that the plane of
polarisation is rotated in an
electric field. He is also
credited with the invention
of the electric motor, the
electric generator and the
transformer. He is widely
regarded as the greatest
experimental scientist of
the nineteenth century.
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Solution The angle q made by the area vector of the coil with the

magnetic field is 45°. From Eq. (6.1), the initial magnetic flux is

F
 
= BA cos q

–20.1 10
Wb

2

×
=

Final flux, F
min 

= 0

The change in flux is brought about in 0.70 s. From Eq. (6.3), the

magnitude of the induced emf is given by

( )– 0
B

t t

ΦΦ
ε

∆
= =

∆ ∆
 

–310
= 1.0 mV

2 0.7
=

×
And the magnitude of the current is

–310 V
2mA

0.5
I

R

ε
= = =

Ω
Note that the earth’s magnetic field also produces a flux through the

loop. But it is a steady field (which does not change within the time
span of the experiment) and hence does not induce any emf.

Example 6.3

A circular coil of radius 10 cm, 500 turns and resistance 2 W is placed

with its plane perpendicular to the horizontal component of the earth’s
magnetic field. It is rotated about its vertical diameter through 180°

in 0.25 s. Estimate the magnitudes of the emf and current induced in

the coil. Horizontal component of the earth’s magnetic field at the
place is 3.0 × 10–5 T.

Solution

Initial flux through the coil,

F
B (initial)

= BA cos q

= 3.0 × 10–5 × (p ×10–2) × cos 0°

= 3p × 10–7 Wb

Final flux after the rotation,

F
B (final)    

= 3.0 × 10–5 × (p ×10–2) × cos 180°

= –3p × 10–7 Wb

Therefore, estimated value of the induced emf is,

N
t

Φε ∆=
∆

   = 500 × (6p × 10–7)/0.25

   = 3.8  × 10–3  V

I = e/R = 1.9 × 10–3 A

Note that the magnitudes of e and I are the estimated values. Their
instantaneous values are different and depend upon the speed of

rotation at the particular instant.
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6.5  LENZ’S LAW AND CONSERVATION OF ENERGY

In 1834, German physicist Heinrich Friedrich Lenz (1804-1865) deduced

a rule, known as Lenz’s law which gives the polarity of the induced emf

in a clear and concise fashion. The statement of the law is:

The polarity of induced emf is such that it tends to produce a current

which opposes the change in magnetic flux that produced it.

The negative sign shown in Eq. (6.3) represents this effect. We can

understand Lenz’s law by examining Experiment 6.1 in Section 6.2.1. In

Fig. 6.1, we see that the North-pole of a bar magnet is being pushed

towards the closed coil. As the North-pole of the bar magnet moves towards

the coil, the magnetic flux through the coil increases. Hence current is

induced in the coil in such a direction that it opposes the increase in flux.

This is possible only if the current in the coil is in a counter-clockwise

direction with respect to an observer situated on the side of the magnet.

Note that magnetic moment associated with this current has North polarity

towards the North-pole of the approaching magnet. Similarly, if the North-

pole of the magnet is being withdrawn from the coil, the magnetic flux

through the coil will decrease. To counter this decrease in magnetic flux,

the induced current in the coil flows in clockwise direction and its South-

pole faces the receding North-pole of the bar magnet. This would result in

an attractive force which opposes the motion of the magnet and the

corresponding decrease in flux.

What will happen if an open circuit is used in place of the closed loop

in the above example? In this case too, an emf is induced across the open

ends of the circuit. The direction of the induced emf can be found

using Lenz’s law. Consider Figs. 6.6 (a) and (b). They provide an easier

way to understand the direction of induced currents. Note that the

direction shown by  and  indicate the directions of the induced

currents.

A little reflection on this matter should convince us on the

correctness of Lenz’s law. Suppose that the induced current was in

the direction opposite to the one depicted in Fig. 6.6(a). In that case,

the South-pole due to the induced current will face the approaching

North-pole of the magnet. The bar magnet will then be attracted

towards the coil at an ever increasing acceleration. A gentle push on

the magnet will initiate the process and its velocity and kinetic energy

will continuously increase without expending any energy. If this can

happen, one could construct a perpetual-motion machine by a

suitable arrangement. This violates the law of conservation of energy

and hence can not happen.

Now consider the correct case shown in Fig. 6.6(a). In this situation,

the bar magnet experiences a repulsive force due to the induced

current. Therefore, a person has to do work in moving the magnet.

Where does the energy spent by the person go? This energy is

dissipated by Joule heating produced by the induced current.

FIGURE 6.6

Illustration of

Lenz’s law.
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Example 6.4

Figure 6.7 shows planar loops of different shapes moving out of or
into a region of a magnetic field which is directed normal to the plane

of the loop away from the reader. Determine the direction of induced

current in each loop using Lenz’s law.

FIGURE 6.7

Solution

(i) The magnetic flux through the rectangular loop abcd increases,

due to the motion of the loop into the region of magnetic field, The

induced current must flow along the path bcdab so that it opposes
the increasing flux.

(ii) Due to the outward motion, magnetic flux through the triangular

loop abc decreases due to which the induced current flows along
bacb, so as to oppose the change in flux.

(iii) As the magnetic flux decreases due to motion of the irregular

shaped loop abcd out of the region of magnetic field, the induced
current flows along cdabc, so as to oppose change in flux.

Note that there are no induced current as long as the loops are

completely inside or outside the region of the magnetic field.

Example 6.5
(a) A closed loop is held stationary in the magnetic field between the

north and south poles of two permanent magnets held fixed. Can
we hope to generate current in the loop by using very strong
magnets?

(b) A closed loop moves normal to the constant electric field between
the plates of a large capacitor. Is a current induced in the loop
(i) when it is wholly inside the region between the capacitor plates
(ii) when it is partially outside the plates of the capacitor? The
electric field is normal to the plane of the loop.

(c) A rectangular loop and a circular loop are moving out of a uniform
magnetic field region (Fig. 6.8) to a field-free region with a constant
velocity v. In which loop do you expect the induced emf to be
constant during the passage out of the field region?  The field is
normal to the loops.

 E
X

A
M

P
L
E
 6

.5

2024-25



Physics

162

 E
X

A
M

P
L
E
 6

.5
FIGURE 6.8

(d) Predict the polarity of the capacitor in the situation described by

Fig. 6.9.

FIGURE 6.9

Solution

(a) No. However strong the magnet may be, current can be induced
only by changing the magnetic flux through the loop.

(b) No current is induced in either case. Current can not be induced

by changing the electric flux.
(c) The induced emf is expected to be constant only in the case of the

rectangular loop. In the case of circular loop, the rate of change of

area of the loop during its passage out of the field region is not
constant, hence induced emf will vary accordingly.

(d) The polarity of plate ‘A’ will be positive with respect to plate ‘B’ in

the capacitor.

6.6  MOTIONAL ELECTROMOTIVE FORCE

Let us consider a straight conductor moving in a uniform and time-

independent magnetic field.  Figure 6.10 shows a rectangular conductor
PQRS in which the conductor PQ is free to move. The rod PQ is moved

towards the left with a constant velocity v as

shown in the figure. Assume that there is no
loss of energy due to friction. PQRS forms a

closed circuit enclosing an area that changes

as PQ moves. It is placed in a uniform magnetic
field B which is perpendicular to the plane of

this system. If the length RQ = x and RS = l, the

magnetic flux F
B 

enclosed  by the loop PQRS
will be

F
B
 = Blx

Since x is changing with time, the rate of change
of flux F

B 
will induce an emf given by:

( )– d d
–

d d
B Blx

t t

Φε = =

   = 
d

–
d

x
Bl Blv

t
= (6.5)

FIGURE 6.10  The arm PQ is moved to the left
side, thus decreasing the area of the

rectangular loop. This movement

induces a current I as shown.
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where we have used dx/dt = –v  which is the speed of the conductor PQ.

The induced emf Blv is called motional emf. Thus, we are able to produce

induced emf by moving a conductor instead of varying the magnetic field,
that is, by changing the magnetic flux enclosed by the circuit.

It is also possible to explain the motional emf expression in Eq. (6.5)

by invoking the Lorentz force acting on the free charge carriers of conductor
PQ. Consider any arbitrary charge q in the conductor PQ. When the rod

moves with speed v, the charge will also be moving with speed v in the

magnetic field B. The Lorentz force on this charge is qvB in magnitude,
and its direction is towards Q. All charges experience the same force, in

magnitude and direction, irrespective of their position in the rod PQ.

The work done in moving the charge from P to Q is,

W = qvBl

Since emf is the work done per unit charge,

W

q
ε =

    = Blv

This equation gives emf induced across the rod PQ and is identical

to Eq. (6.5). We stress that our presentation is not wholly rigorous. But

it does help us to understand the basis of Faraday’s law when
the conductor is moving in a uniform and time-independent

magnetic field.

On the other hand, it is not obvious how an emf is induced when a
conductor is stationary and the magnetic field is changing – a fact which

Faraday verified by numerous experiments. In the case of a stationary

conductor, the force on its charges is given by

F = q (E + v ´́́́́ B) = qE (6.6)

since v = 0. Thus, any force on the charge must arise from the electric

field term E alone. Therefore, to explain the existence of induced emf or
induced current, we must assume that a time-varying magnetic field

generates an electric field. However, we hasten to add that electric fields

produced by static electric charges have properties different from those
produced by time-varying magnetic fields. In Chapter 4, we learnt that

charges in motion (current) can exert force/torque on a stationary magnet.

Conversely, a bar magnet in motion (or more generally, a changing
magnetic field) can exert a force on the stationary charge. This is the

fundamental significance of the Faraday’s discovery. Electricity and

magnetism are related.

Example 6.6  A metallic rod of 1 m length is rotated with a frequency
of 50 rev/s, with one end hinged at the centre and the other end at the

circumference of a circular metallic ring of radius 1 m, about an axis

passing through the centre and perpendicular to the plane of the ring
(Fig. 6.11). A constant and uniform magnetic field of 1 T parallel to the

axis is present everywhere. What is the emf between the centre and

the metallic ring?

 E
X

A
M

P
L
E
 6

.6

2024-25



Physics

164  E
X

A
M

P
L
E
 6

.6

FIGURE 6.11

Solution

Method I

As the rod is rotated, free electrons in the rod move towards the outer
end due to Lorentz force and get distributed over the ring. Thus, the

resulting separation of charges produces an emf across the ends of

the rod. At a certain value of emf, there is no more flow of electrons
and a steady state is reached. Using Eq. (6.5), the magnitude of the

emf generated across a length dr of the rod as it moves at right angles

to the magnetic field is given by

d dBv rε = . Hence,

ε ε= = ∫∫ d dBv r
R

0

 = =∫ B r r
B R

R

ω
ω

d
2

0
2

Note that we have used v = w r. This gives

e 
21

1.0 2 50 (1 )
2

= × × π × ×

= 157 V

Method II

To calculate the emf, we can imagine a closed loop OPQ in which

point O and P are connected with a resistor R and OQ is the rotating
rod. The potential difference across the resistor is then equal to the

induced emf and equals B × (rate of change of area of loop). If q is the

angle between the rod and the radius of the circle at P at time t, the
area of the sector OPQ is given by

2 21

2 2
R R

θ θπ × =
π

where R is the radius of the circle. Hence, the induced emf is

e = B
t

R× 





d

d

1

2

2θ  = 
2

21 d

2 d 2

θ ω
=

B R
BR

t

[Note: 
d

2
dt

θ ω ν= = π ]

This expression is identical to the expression obtained by Method I
and we get the same value of e.
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Example 6.7

A wheel with 10 metallic spokes each 0.5 m long is rotated with a
speed of 120 rev/min in a plane normal to the horizontal component
of earth’s magnetic field H

E
 at a place. If H

E
 = 0.4 G at the place, what

is the induced emf between the axle and the rim of the wheel? Note
that 1 G = 10–4 T.

Solution

Induced emf = (1/2) ω B R2

= (1/2) × 4π × 0.4 × 10–4
 × (0.5)2

= 6.28 × 10–5 V

The number of spokes is immaterial because the emf’s across the
spokes are in parallel.

6.7  INDUCTANCE

An electric current can be induced in a coil by flux change produced by
another coil in its vicinity or flux change produced by the same coil. These

two situations are described separately in the next two sub-sections.
However, in both the cases, the flux through a coil is proportional to the
current. That is,  Φ

B
 α I.

Further, if the geometry of the coil does not vary with time then,

d d

d d

B
I

t t

Φ ∝

For a closely wound coil of N turns, the same magnetic flux is linked
with all the turns. When the flux Φ

B
 through the coil changes, each turn

contributes to the induced emf. Therefore, a term called flux linkage is
used which is equal to NΦ

B
 for a closely wound coil and in such a case

NΦ
B ∝  I

The constant of proportionality, in this relation, is called inductance.
We shall see that inductance depends only on the geometry of the coil
and intrinsic material properties. This aspect is akin to capacitance which

for a parallel plate capacitor depends on the plate area and plate separation
(geometry) and the dielectric constant K of the intervening medium
(intrinsic material property).

Inductance is a scalar quantity. It has the dimensions of [M L2 T–2 A–2]
given by the dimensions of flux divided by the dimensions of current. The
SI unit of inductance is henry and is denoted by H. It is named in honour

of Joseph Henry who discovered electromagnetic induction in USA,
independently of Faraday in England.

6.7.1  Mutual inductance

Consider Fig. 6.12 which shows two long co-axial solenoids each of length

l. We denote the radius of the inner solenoid S
1
 by r

1
 and the number of

turns per unit length by n
1
. The corresponding quantities for the outer

solenoid S
2 
are r

2 
and n

2
, respectively. Let N

1
 and N

2
 be the total number

of turns of coils S
1
 and S

2
, respectively.
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When a current I
2
 is set up through S

2
, it in turn sets

up a magnetic flux through S
1
. Let us denote it by Φ

1
.

The corresponding flux linkage with  solenoid S
1
 is

N
1 1 12 2

M IΦ = (6.7)

M
12

 is called the mutual inductance of solenoid S
1
 with

respect to solenoid S
2
. It is also referred to as the

coefficient of mutual induction.
For these simple co-axial solenoids it is possible to

calculate M
12

. The magnetic field due to the current I
2 
in

S
2
 is µ

0
n

2
I
2
. The resulting flux linkage with coil S

1 
is,

( ) ( ) ( )2

1 1 1 1 0 2 2
N n l r n IΦ µ= π

         2

0 1 2 1 2
n n r l Iµ= π (6.8)

where n
1
l is the total number of turns in solenoid S

1
.

Thus, from Eq. (6.7) and Eq. (6.8),

M
12

 = µ
0
n

1
n

2
πr

2
1
l (6.9)

Note that we neglected the edge effects and considered

the magnetic field µ
0
n

2
I
2
 to be uniform throughout the

length and width of the solenoid S
2
. This is a good approximation keeping

in mind that the solenoid is long, implying l  >> r
2
.

We now consider the reverse case. A current I
1 
is passed through the

solenoid S
1 
and the flux linkage with coil S

2 
is,

N
2
Φ

2
 = M

21
 I

1
(6.10)

M
21

 is called the mutual inductance of solenoid S
2
 with respect to

solenoid S
1
.

The flux due to the current I
1
 in S

1 
can be assumed to be confined

solely inside S
1
 since the solenoids are very long. Thus, flux linkage with

solenoid S
2
 is

( ) ( ) ( )2

2 2 2 1 0 1 1
N n l r n IΦ µ= π

where n
2
l is the total number of turns of S

2
. From Eq. (6.10),

M
21

 = µ
0
n

1
n

2
πr

2

1
l (6.11)

Using Eq. (6.9) and Eq. (6.10), we get

M
12 

= M
21

= M (say) (6.12)

We have demonstrated this equality for long co-axial solenoids.
However, the relation is far more general. Note that if the inner solenoid
was much shorter than (and placed well inside) the outer solenoid, then

we could still have calculated the flux linkage N
1
Φ

1
 because the inner

solenoid is effectively immersed in a uniform magnetic field due to the
outer solenoid. In this case, the calculation of M

12
 would be easy. However,

it would be extremely difficult to calculate the flux linkage with the outer
solenoid as the magnetic field due to the inner solenoid would vary across
the length as well as cross section of the outer solenoid. Therefore, the

calculation of M
21

 would also be extremely difficult in this case. The
equality M

12
=M

21
 is very useful in such situations.

FIGURE 6.12 Two long co-axial

solenoids of same
length l .
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We explained the above example with air as the medium within the
solenoids. Instead, if a medium of relative permeability µ

r
 had been present,

the mutual inductance would be

M =µ
r 
µ

0 
n

1
n

2
π r2

1 
l

It is also important to know that the mutual inductance of a pair of
coils, solenoids, etc., depends on their separation as well as their relative
orientation.

Example 6.8 Two concentric circular coils, one of small radius r
1
 and

the other of large radius r
2
, such that r

1
 << r

2
,
 
 are placed co-axially

with centres coinciding. Obtain the mutual inductance of the

arrangement.

Solution  Let a current I
2
 flow through the outer circular coil. The

field at the centre of the coil is B
2
 = µ

0
I
2
 / 2r

2
. Since the other

co-axially placed coil has a very small radius, B
2
 may be considered

constant over its cross-sectional area. Hence,
Φ

1
 = πr 2

1
B

2

     

2

0 1

2

2
2

r
I

r

µ π
=

     = M
12 

I
2

Thus,

2

0 1

12

2
2

r
M

r

µ π
=

From Eq. (6.12)

2

0 1

12 21

2
2

r
M M

r

µ π
= =

Note that we calculated M
12

 from an approximate value of Φ
1
, assuming

the magnetic field B
2
 to be uniform over the area π r

1
2. However, we

can accept this value because r
1 

<< r
2
.

Now, let us recollect Experiment 6.3 in Section 6.2. In that experiment,
emf is induced in coil C

1
 wherever there was any change in current through

coil C
2
. Let Φ

1
 be the flux through coil C

1
 (say of N

1
 turns) when current in

coil C
2
 is I

2
.

Then, from Eq. (6.7), we have
N

1
Φ

1
 = MI

2

For currents varrying with time,

( ) ( )1 1 2
d d

d d

N MI

t t

Φ
=

Since induced emf in coil C
1
 is given by

( )1 1
d

–
d

N

t

Φ
ε1 =

We get,

2
d

–
d

I
M

t
ε1 =
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It shows that varying current in a coil can induce emf in a neighbouring
coil. The magnitude of the induced emf depends upon the rate of change

of current and mutual inductance of the two coils.

6.7.2  Self-inductance

In the previous sub-section, we considered the flux in one solenoid due
to the current in the other.  It is also possible that emf is induced in a

single isolated coil due to change of flux through the coil by means of
varying the current through the same coil. This phenomenon is called
self-induction. In this case, flux linkage through a coil of N turns is

proportional to the current through the coil and is expressed as

B
N IΦ ∝

B
LN IΦ = (6.13)

where constant of proportionality L is called self-inductance of the coil. It

is also called the coefficient of self-induction of the coil. When the current
is varied, the flux linked with the coil also changes and an emf is induced
in the coil. Using Eq. (6.13), the induced emf is given by

( )B
d

–
d

N

t

Φ
ε =

d
–

d

I
L

t
ε = (6.14)

Thus, the self-induced emf always opposes any change  (increase or
decrease) of current in the coil.

It is possible to calculate the self-inductance for circuits with simple

geometries. Let us calculate the self-inductance of a long solenoid of cross-
sectional area A and length l, having n turns per unit length. The magnetic
field due to a current I flowing in the solenoid is B = µ

0
 n I  (neglecting edge

effects, as before). The total flux linked with the solenoid is

( )( )( )0B
N nl n I AΦ µ=

IAln
2

0
µ=

where nl is the total number of turns. Thus, the self-inductance is,

L
I

ΒΝΦ=

   2

0
n Alµ= (6.15)

If we fill the inside of the solenoid with a material of relative permeability

µ
r
 (for example soft iron, which has a high value of relative permeability),

then,

2

0r
L n Alµ µ= (6.16)

The self-inductance of the coil depends on its geometry and on the

permeability of the medium.

The self-induced emf is also called the back emf  as it opposes any

change in the current in a circuit. Physically, the self-inductance plays
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the role of inertia. It is the electromagnetic analogue of mass in mechanics.

So, work needs to be done against the back emf (ε ) in establishing the

current. This work done is stored as magnetic potential energy. For the

current I at an instant in a circuit, the rate of work done is

d

d

W
I

t
ε=

If we ignore the resistive losses and consider only inductive effect,

then using Eq. (6.14),

d d

d d

W I
L I

t t
=

Total amount of work done in establishing the current I is

W W L I I

I

= =∫ ∫d d

0

Thus, the energy required to build up the current I is,

21

2
W LI= (6.17)

This expression reminds us of mv
2/2 for the (mechanical) kinetic energy

of a particle of mass m, and shows that L is analogous to m (i.e., L is

electrical inertia and opposes growth and decay of current in the circuit).

Consider the general case of currents flowing simultaneously in two

nearby coils. The flux linked with one coil will be the sum of two fluxes

which exist independently. Equation (6.7) would be modified into

N
1 1 11 1 12 2

M I M IΦ = +

where M
11

 represents inductance due to the same coil.

Therefore, using Faraday’s law,

1 2

1 11 12

d d

d d

I I
M M

t t
ε = − −

M
11 

is the self-inductance and is written as L
1
. Therefore,

1 2

1 1 12

d d

d d

I I
L M

t t
ε = − −

Example 6.9 (a) Obtain the expression for the magnetic energy stored
in a solenoid in terms of magnetic field B, area A and length l of the

solenoid. (b) How does this magnetic energy compare with the
electrostatic energy stored in a capacitor?

Solution

(a) From Eq. (6.17), the magnetic energy is

21

2
B

U LI=

=






=( )1

2

2

L
B

n
nI

µ
µ

0

0
Bsince  for a solenoid,

 E
X

A
M

P
L
E
 6

.9
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=






1

2
0

2

0

2

( )µ
µ

n Al
B

n
        [from Eq. (6.15)]

2

0

1

2
B Al

µ
=

(b) The magnetic energy per unit volume is,

B
B

U
u

V
=             (where V is volume that contains flux)

      
BU

Al
=

      

2

02

B

µ
= (6.18)

We have already obtained the relation for the electrostatic energy

stored per unit volume in a parallel plate capacitor (refer to Chapter 2,
Eq. 2.73),

2
0

1

2
u EΕ ε= (2.73)

In both the cases energy is proportional to the square of the field

strength. Equations (6.18) and (2.73) have been derived for special
cases: a solenoid and a parallel plate capacitor, respectively. But they
are general and valid for any region of space in which a magnetic field

or/and an electric field exist.

FIGURE 6.13 AC Generator
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6.8  AC GENERATOR

The phenomenon of electromagnetic induction
has been technologically exploited in many ways.

An exceptionally important application is the
generation of alternating currents (ac). The
modern ac generator with a typical output

capacity of 100 MW is a highly evolved machine.
In this section, we shall describe the basic
principles behind this machine. The Yugoslav

inventor Nicola Tesla is credited with the
development of the machine. As was pointed out
in Section 6.3, one method to induce an emf or

current in a loop is through a change in the
loop’s orientation or a change in its effective area.
As the coil rotates in a magnetic field B, the

effective area of the loop (the face perpendicular
to the field) is A cos q, where q is the angle
between A and B. This method of producing a

flux change is the principle of operation of a
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simple ac generator. An ac generator converts mechanical energy into
electrical energy.

The basic elements of an ac generator are shown in Fig. 6.13. It consists
of a coil mounted on a rotor shaft. The axis of rotation of the coil is
perpendicular to the direction of the magnetic field. The coil (called

armature) is mechanically rotated in the  uniform magnetic field by some
external means. The rotation of the coil causes the magnetic flux through
it to change, so an emf is induced in the coil. The ends of the

coil are connected to an external circuit by means of slip rings
and brushes.

When the coil is rotated with a constant angular speed w, the angle q

between the magnetic field vector B and the area vector A of the coil at any
instant t is q  = wt (assuming q = 0° at t = 0). As a result, the effective area
of the coil exposed to the magnetic field lines changes with time, and from

Eq. (6.1), the flux at any time t is

F
B
 = BA cos q = BA cos wt

From Faraday’s law, the induced emf for the rotating coil of N turns

is then,

d d
– – (cos )

dt d
BN NBA t

t

Φε ω= =

Thus, the instantaneous value of the emf is

ε ω ω= NBA sin t (6.19)

where NBAw is the maximum value of the emf, which occurs when

sin wt = ±1. If we denote NBAw as e
0
, then

e = e
0
 sin wt (6.20)

Since the value of the sine fuction varies between +1 and –1, the sign, or

polarity of the emf changes with time. Note from Fig. 6.14 that the emf
has its extremum value when q = 90° or q = 270°, as the change of flux is
greatest at these points.

The direction of the current changes periodically and therefore the current
is called alternating current (ac). Since w = 2pn, Eq (6.20) can be written as

e = e
0
sin 2p n t (6.21)

where n is the frequency of revolution of the generator’s coil.
Note that Eq. (6.20) and (6.21) give the instantaneous value of the emf

and e varies between +e
0
 and –e

0
 periodically. We shall learn how to

determine the time-averaged value for the alternating voltage and current
in the next chapter.

In commercial generators, the mechanical energy required for

rotation of the armature is provided by water falling from a height, for
example, from dams. These are called hydro-electric generators.
Alternatively, water is heated to produce steam using coal or other

sources. The steam at high pressure produces the rotation of the
armature. These are called thermal generators. Instead of coal, if a
nuclear fuel is used, we get nuclear power generators. Modern day

generators produce electric power as high as 500 MW, i.e., one can light
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Example 6.10 Kamla peddles a stationary bicycle. The pedals of the
bicycle are attached to a 100 turn coil of area 0.10 m2. The coil rotates

at half a revolution per second and it is placed in a uniform magnetic
field of 0.01 T perpendicular to the axis of rotation of the coil. What is
the maximum voltage generated in the coil?

Solution  Here n = 0.5 Hz; N =100, A = 0.1 m2 and B = 0.01 T. Employing
Eq. (6.19)

e
0
 = NBA (2 p n)

   = 100 × 0.01 × 0.1 × 2 × 3.14 × 0.5

   = 0.314 V

The maximum voltage is 0.314 V.

We urge you to explore such alternative possibilities for power

generation.

FIGURE 6.14 An alternating emf is generated by a loop of wire rotating in a magnetic field.

up 5 million 100 W bulbs! In most generators, the coils are held
stationary and it is the electromagnets which are rotated. The frequency
of rotation is 50 Hz in India. In certain countries such as USA, it is

60 Hz.
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SUMMARY

1. The magnetic flux through a surface of area A placed in a uniform magnetic
field B is defined as,

F
B
 = B.A = BA cos q

where q is the angle between B and A.

2. Faraday’s laws of induction imply that the emf induced in a coil of N

turns is directly related to the rate of change of flux through it,

Bd

d
N

t

Φε = −

Here F
B
 is the flux linked with one turn of the coil. If the circuit is

closed, a current I = e/R is set up in it, where R is the resistance of the

circuit.

3. Lenz’s law states that the polarity of the induced emf is such that it

tends to produce a current which opposes the change in magnetic flux
that produces it. The negative sign in the expression for Faraday’s law

indicates this fact.

4. When a metal rod of length l is placed normal to a uniform magnetic

field B and moved with a velocity v perpendicular to the field, the

induced emf (called motional emf) across its ends is

e = Bl v

5. Inductance is the ratio of the flux-linkage to current. It is equal to NF/I.

6. A changing current in a coil (coil 2) can induce an emf in a nearby coil
(coil 1). This relation is given by,

2
1 12

d

d

I
M

t
ε = −

The quantity M
12 

is called mutual inductance of coil 1 with respect to

coil 2. One can similarly define M
21

. There exists a general equality,

M
12

 = M
21

7. When a current in a coil changes, it induces a back emf in the same

coil. The self-induced emf is given by,

d

d

I
L

t
ε = −

L is the self-inductance of the coil. It is a measure of the inertia of the
coil against the change of current through it.

8. The self-inductance of a long solenoid, the core of which consists of a

magnetic material of relative permeability m
r
, is given by

L = m
r  

m
0 
n2 Al

where A is the area of cross-section of the solenoid, l its length and n

the number of turns per unit length.
9. In an ac generator, mechanical energy is converted to electrical energy

by virtue of electromagnetic induction. If coil of N turn and area A is

rotated at n revolutions per second in a uniform magnetic field B, then
the motional emf produced is

e = NBA (2pn) sin (2pnt)

where we have assumed that at time t = 0 s, the coil is perpendicular to
the field.
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POINTS TO PONDER

1. Electricity and magnetism are intimately related. In the early part of the

nineteenth century, the experiments of Oersted, Ampere and others

established that moving charges (currents) produce a magnetic field.

Somewhat later, around 1830, the experiments of Faraday and Henry

demonstrated that a moving magnet can induce electric current.

2. In a closed circuit, electric currents are induced so as to oppose the

changing magnetic flux. It is as per the law of conservation of energy.

However, in case of an open circuit, an emf is induced across its ends.

How is it related to the flux change?

3. The motional emf discussed in Section 6.5 can be argued independently

from Faraday’s law using the Lorentz force on moving charges. However,

even if the charges are stationary [and the q (v × B) term of the Lorentz

force is not operative], an emf is nevertheless induced in the presence of a

time-varying magnetic field. Thus, moving charges in static field and static

charges in a time-varying field seem to be symmetric situation for Faraday’s

law. This gives a tantalising hint on the relevance of the principle of

relativity for Faraday’s law.

EXERCISES

6.1 Predict the direction of induced current in the situations described
by the following Figs. 6.15(a) to (f ).

Quantity Symbol Units Dimensions Equations

Magnetic Flux F
B

Wb (weber) [M L2 T –2 A–1] F
B
 = B Ai

EMF e V (volt) [M L2 T –3 A–1] e = Bd( )/dN tΦ−

Mutual Inductance M H (henry) [M L2 T –2 A–2] e
1
 ( )12 2d /dM I t= −

Self Inductance L H (henry) [M L2 T –2 A–2] ( )d /dL I tε = −
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FIGURE 6.15

6.2 Use Lenz’s law to determine the direction of induced current in the

situations described by Fig. 6.16:

(a) A wire of irregular shape turning into a circular shape;
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(b) A circular loop being deformed into a narrow straight wire.

FIGURE 6.16

6.3 A long solenoid with 15 turns per cm has a small loop of area 2.0 cm2

placed inside the solenoid normal to its axis. If the current carried

by the solenoid changes steadily from 2.0 A to 4.0 A in 0.1 s, what is

the induced emf in the loop while the current is changing?

6.4 A rectangular wire loop of sides 8 cm and 2 cm with a small cut is

moving out of a region of uniform magnetic field of magnitude 0.3 T
directed normal to the loop. What is the emf developed across the

cut if the velocity of the loop is 1 cm s–1 in a direction normal to the

(a) longer side, (b) shorter side of the loop? For how long does the
induced voltage last in each case?

6.5 A 1.0 m long metallic rod is rotated with an angular frequency of
400 rad s–1

 
about an axis normal to the rod passing through its one

end. The other end of the rod is in contact with a circular metallic

ring. A constant and uniform magnetic field of 0.5 T parallel to the
axis exists everywhere. Calculate the emf developed between the

centre and the ring.

6.6 A horizontal straight wire 10 m long extending from east to west is

falling with a speed of 5.0 m s–1, at right angles to the horizontal

component of the earth’s magnetic field, 0.30 ´ 10–4 Wb m–2.
(a) What is the instantaneous value of the emf induced in the wire?

(b) What is the direction of the emf?

(c) Which end of the wire is at the higher electrical potential?

6.7 Current in a circuit falls from 5.0 A to 0.0 A in 0.1 s. If an average emf

of 200 V induced, give an estimate of  the self-inductance of the circuit.

6.8 A pair of adjacent coils has a mutual inductance of 1.5 H. If the

current in one coil changes from 0 to 20 A in 0.5 s, what is the
change of flux linkage with the other coil?
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7.1  INTRODUCTION

We have so far considered direct current (dc) sources and circuits with dc
sources. These currents do not change direction with time. But voltages
and currents that vary with time are very common. The electric mains
supply in our homes and offices is a voltage that varies like a sine function
with time. Such a voltage is called alternating voltage (ac voltage) and
the current driven by it in a circuit is called the alternating current (ac
current)*. Today, most of the electrical devices we use require ac voltage.
This is mainly because most of the electrical energy sold by power
companies is transmitted and distributed as alternating current. The main
reason for preferring use of ac voltage over dc voltage is that ac voltages
can be easily and efficiently converted from one voltage to the other by
means of transformers. Further, electrical energy can also be transmitted
economically over long distances. AC circuits exhibit characteristics which
are exploited in many devices of daily use. For example, whenever we
tune our radio to a favourite station, we are taking advantage of a special
property of ac circuits – one of many that you will study in this chapter.

Chapter Seven

ALTERNATING

CURRENT

* The phrases ac voltage and ac current are contradictory and redundant,
respectively, since they mean, literally, alternating current voltage and alternating

current current. Still, the abbreviation ac to designate an electrical quantity

displaying simple harmonic time dependance has become so universally accepted

that we follow others in its use. Further, voltage – another phrase commonly

used means potential difference between two points.
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Nicola Tesla  (1856 –

1943) Serbian-American
scientist, inventor and

genius. He conceived the
idea of the rotating
magnetic field, which is the

basis of practically all
alternating current
machinery, and which

helped usher in the age of
electric power. He also
invented among other

things the induction motor,
the polyphase system of ac
power, and the high

frequency induction coil
(the Tesla coil) used in radio
and television sets and

other electronic equipment.
The SI unit of magnetic field
is named in his honour.

7.2  AC VOLTAGE APPLIED TO A RESISTOR

Figure 7.1 shows a resistor connected to a source ε of
ac voltage. The symbol for an ac source in a circuit

diagram is . We consider a source which produces
sinusoidally varying potential difference across its
terminals. Let this potential difference, also called ac

voltage, be given by

sinmv v tω= (7.1)

where v
m
 is the amplitude of the oscillating potential

difference and ω  is its angular frequency.

To find the value of current through the resistor, we

apply Kirchhoff’s loop rule ε( )t =∑ 0 (refer to Section

3.12), to the circuit shown in Fig. 7.1 to get

=sinmv t i Rω

or   sinmv
i t

R
ω=

Since R is a constant, we can write this equation as

sinmi i tω= (7.2)

where the current amplitude i
m
 is given by

m
m

v
i

R
= (7.3)

Equation (7.3) is Ohm’s law, which for resistors, works equally

well for both ac and dc voltages. The voltage across a pure resistor

and the current through it, given by Eqs. (7.1) and (7.2) are

plotted as a function of time in Fig. 7.2. Note, in particular that

both v and i reach zero, minimum and maximum values at the

same time. Clearly, the voltage and current are in phase with

each other.

We see that, like the applied voltage, the current varies

sinusoidally and has corresponding positive and negative values

during each cycle. Thus, the sum of the instantaneous current

values over one complete cycle is zero, and the average current

is zero. The fact that the average current is zero, however, does

FIGURE 7.1  AC voltage applied to a resistor.

FIGURE 7.2 In a pure
resistor, the voltage and

current are in phase. The
minima, zero and maxima

occur at the same
respective times.
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George Westinghouse
(1846 – 1914) A leading
proponent of the use of

alternating current over
direct current. Thus,
he came into conflict

with Thomas Alva Edison,
an advocate of direct
current. Westinghouse

was convinced that the
technology of alternating
current was the key to

the electrical future.
He founded the famous
Company named after him

and enlisted the services
of Nicola Tesla and
other inventors in the

development of alternating
current motors and
apparatus for the

transmission of high
tension current, pioneering
in large scale lighting.

not mean that the average power consumed is zero and
that there is no dissipation of electrical energy. As you

know, Joule heating is given by i2R and depends on i2

(which is always positive whether i is positive or negative)
and not on i. Thus, there is Joule heating and

dissipation of electrical energy when an
ac current passes through a resistor.
The instantaneous power dissipated in the resistor is

2 2 2sinmp i R i R tω= = (7.4)

The average value of p over a cycle is*

2 2 2sinmp i R i R tω= < > = < >   [7.5(a)]

where the bar over a letter (here, p) denotes its average
value and <......> denotes taking average of the quantity

inside the bracket. Since,  i2
m 

and R are constants,

2 2sinmp i R tω= < > [7.5(b)]

Using the trigonometric identity, sin2 wt =
1/2 (1– cos 2wt ), we have < sin2 wt > = (1/2) (1– < cos 2wt >)

and since < cos2wt > = 0**, we have,

2 1
sin

2
tω< > =

Thus,

21

2
mp i R= [7.5(c)]

To express ac power in the same form as dc power
(P = I2R), a special value of current is defined and used.
It is called, root mean square (rms) or effective current

(Fig. 7.3) and is denoted by I
rms

 or I.

* The average value of a function F (t ) over a period T is given by F t
T

F t t

T

( ) ( )= ∫1

0

d

** < > = ∫ = 





= −[ ] =cos cos
sin

sin2
1

2
1 2

2

1

2
2 0 0

0 0

ω ω
ω

ω ω
ωt

T
t dt

T

t

T
T

TT

FIGURE 7.3 The rms current I is related to the

peak  current i
m
 by I = / 2

m
i  = 0.707 i

m
.
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It is defined by

2 21

2 2

m
m

i
I i i= = =

= 0.707 i
m

(7.6)

In terms of I, the average power, denoted by P is

2 21

2
m

pP i R I R= = = (7.7)

Similarly, we define the rms voltage or effective voltage by

V = 
2

mv
 = 0.707 v

m
(7.8)

From Eq. (7.3), we have

v
m
 = i

m
R

or,  
2 2

m mv i
R=

or,  V = IR (7.9)

Equation (7.9) gives the relation between ac current and ac voltage
and is similar to that in the dc case. This shows the advantage of

introducing the concept of rms values. In terms of rms values, the equation
for power [Eq. (7.7)] and relation between current and voltage in ac circuits
are essentially the same as those for the dc case.

It is customary to measure and specify rms values for ac quantities. For
example, the household line voltage of 220 V is an rms value with a peak
voltage of

v
m
 = 2  V =  (1.414)(220 V) = 311 V

In fact, the I or rms current is the equivalent dc current that would
produce the same average power loss as the alternating current. Equation

(7.7) can also be written as
P = V2 / R = I V    (since V = I R )

Example 7.1 A light  bulb is rated at 100W for a 220 V supply. Find

(a) the resistance of the bulb; (b) the peak voltage of the source; and
(c) the rms current through the bulb.

Solution

(a) We are given P = 100 W and V = 220 V. The resistance of the
bulb is

( )2
2 220 V

484
100 W

V
R

P
= = = Ω

(b) The peak voltage of the source is

V2 311
m

v V= =

(c) Since, P = I V

100 W
0.454A

220 V
� � �

P
I

V E
X

A
M

P
L
E
 7

.1
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7.3 REPRESENTATION OF AC CURRENT AND VOLTAGE

BY ROTATING VECTORS — PHASORS

In the previous section, we learnt that the current through  a resistor is
in phase with the ac voltage. But this is not so in the case  of an inductor,
a capacitor or a combination  of these circuit elements. In order to show

phase relationship between voltage and current
in an ac circuit, we use the notion of phasors.
The analysis of an ac circuit is facilitated by the

use of a phasor diagram. A phasor* is a vector
which rotates about the origin with angular
speed w, as shown in Fig. 7.4. The vertical

components of phasors V and I represent the
sinusoidally varying quantities v and i. The
magnitudes of phasors V and I represent  the

amplitudes or the peak values v
m
 and i

m
 of these

oscillating quantities. Figure 7.4(a) shows the
voltage and current phasors and their

relationship at time t
1
 for the case of an ac source

connected to a resistor i.e., corresponding to the
circuit shown in Fig. 7.1. The projection of

voltage and current phasors on vertical axis, i.e., v
m
 sinw t and i

m
 sinw t,

respectively represent the value of voltage and current at that instant. As
they rotate with frequency w, curves in Fig. 7.4(b) are generated.

From Fig. 7.4(a) we see that phasors V and I for the case of a resistor are
in the same direction. This is so for all times. This means that the phase
angle between the voltage and the current is zero.

7.4  AC VOLTAGE APPLIED TO AN INDUCTOR

Figure 7.5 shows an ac source connected to an inductor. Usually,
inductors have appreciable resistance in their windings, but we shall

assume that this inductor has negligible resistance.
Thus, the circuit is a purely inductive ac circuit. Let
the voltage across the source be v = v

m
 sinw t. Using

the Kirchhoff’s loop rule, ε ( )t =∑ 0 , and  since there

is no resistor in the circuit,

d
0

d

i
v L

t
− = (7.10)

where the second term is the self-induced Faraday
emf in the inductor; and L is the self-inductance of

FIGURE 7.4 (a) A phasor diagram for the
circuit in Fig 7.1. (b) Graph of v and

i versus wt.

FIGURE 7.5  An ac source
connected to an inductor.

* Though voltage and current in ac circuit are represented by phasors – rotating

vectors, they are not vectors themselves. They are scalar quantities. It so happens

that the amplitudes and phases of harmonically varying scalars combine

mathematically in the same way as do the projections of rotating vectors of

corresponding magnitudes and directions. The rotating vectors that represent

harmonically varying scalar quantities are introduced only to provide us with a
simple way of adding these quantities using a rule that we already know.
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the inductor. The negative sign follows from Lenz’s law (Chapter 6).
Combining Eqs. (7.1) and (7.10), we have

d
sin

d
mvi v

t
t L L

ω= = (7.11)

Equation (7.11) implies that the equation for i(t), the current as a
function of time, must be such that its slope di/dt is a sinusoidally varying

quantity, with the same phase as the source voltage and an amplitude
given by v

m
/L. To obtain the current, we integrate di/dt with respect to

time:

d

d
d d

i

t
t

v

L
t tm∫ ∫= sin( )ω

and get,

cos( ) constantmv
i t

L
= − ω +

ω
The integration constant has the dimension of current and is time-

independent. Since the source has an emf which oscillates symmetrically
about zero, the current it sustains also oscillates symmetrically about

zero, so that no constant or time-independent component of the current
exists. Therefore, the integration constant is zero.

Using

− = −





cos( ) sinω ωt t
π
2

, we have

i i tm= −





sin ω
π
2

(7.12)

where  
m

m

v
i

L
=

ω is the amplitude of the current. The quantity w L is

analogous to the resistance and is called inductive reactance, denoted
by X

L
:

X
L
 = w L (7.13)

The amplitude of the current is, then

m
m

L

v
i

X
= (7.14)

The dimension of inductive reactance is the same as that of resistance
and its SI unit is ohm (W). The inductive reactance limits the current in a
purely inductive circuit in the same way as the resistance limits the
current in a purely resistive circuit. The inductive reactance is directly
proportional to the inductance and to the frequency of the current.

A comparison of Eqs. (7.1) and (7.12) for the source voltage and the
current in an inductor shows that the current lags the voltage by p/2 or
one-quarter (1/4) cycle. Figure 7.6 (a) shows the voltage and the current
phasors in the present case at instant t

1
. The current phasor I is p/2

behind the voltage phasor V. When rotated with frequency w counter-
clockwise, they generate the voltage and current given by Eqs. (7.1) and
(7.12), respectively and as shown in Fig. 7.6(b).
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.2

We see that the current reaches its maximum value later than the

voltage by one-fourth of a period 
T

4

2=





π/

ω
. You have seen that an

inductor has reactance that limits current similar to resistance in a
dc circuit. Does it also consume power like a resistance? Let us try to
find out.

The instantaneous power supplied to the inductor is

p i v i t v tL m m= = −



 ( )sin sinω ω

π
2

×

( ) ( )cos sinm mi v t tω ω= −

( )sin 2
2

m mi v
tω= −

So, the average power over a complete cycle is

( )L sin 2
2

m mi v
P tω= −

( )sin 2
2

m mi v
tω= − = 0,

since the average of sin (2wt) over a complete cycle is  zero.
Thus, the average power supplied to an inductor over one complete

cycle is zero.

Example 7.2 A pure inductor of 25.0 mH is connected to a source of

220 V. Find the inductive reactance and rms current in the circuit if
the frequency of the source is 50 Hz.

Solution The inductive reactance,

–
= .

32 2 3 14 50 25 10νπ × × × × ΩLX L=

      = 7.85W
The rms current in the circuit is

V
A

220
28

7.85L

V
I

X
= = =

Ω

FIGURE 7.6 (a) A Phasor diagram for the circuit in Fig. 7.5.

(b) Graph of v and i versus wt.
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7.5   AC VOLTAGE APPLIED TO A CAPACITOR

Figure 7.7 shows an ac source e generating ac voltage v = v
m
 sin wt

connected to a capacitor only, a purely capacitive ac circuit.

When a capacitor is connected to a voltage source
in a dc circuit, current will flow for the short time
required to charge the capacitor. As charge

accumulates on the capacitor plates, the voltage
across them increases, opposing the current. That is,
a capacitor in a dc circuit will limit or oppose the

current as it charges. When the capacitor is fully
charged, the current in the circuit falls to zero.

When the capacitor is connected to an ac source,

as in Fig. 7.7, it limits or regulates the current, but
does not completely prevent the flow of charge. The
capacitor is alternately charged and discharged as

the current reverses each half cycle. Let q  be the
charge on the capacitor at any time t. The instantaneous voltage v across
the capacitor is

q
v

C
= (7.15)

From the Kirchhoff’s loop rule, the voltage across the source and the
capacitor are equal,

sinm

q
v t

C
ω =

To find the current, we use the relation 
d

d

q
i

t
=

( )d

d
sin cos( )m mi v C t C v t

t
ω ω ω= =

Using the relation, cos( ) sinω ωt t= +





π
2

, we have

i i tm= +





sin ω
π
2

(7.16)

where the amplitude of the oscillating current is i
m
 = w Cv

m
. We can rewrite

it as

(1/ )
m

m

v
i

Cω
=

Comparing it to  i
m
= v

m
/R for a purely resistive circuit, we find that

(1/wC)  plays the role of resistance. It is called capacitive reactance and
is denoted by X

c
,

X
c
= 1/wC (7.17)

so that the amplitude of the current is

m
m

C

v
i

X
= (7.18)

FIGURE 7.7  An ac source
connected to a capacitor.
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FIGURE  7.8 (a) A Phasor diagram for the circuit
in Fig. 7.7. (b) Graph of v and i versus ωt.

The dimension of capacitive reactance is the
same as that of resistance and its SI unit is

ohm (Ω). The capacitive reactance limits the
amplitude of the current in a purely capacitive
circuit in the same way as the resistance limits

the current in a purely resistive circuit. But it
is inversely proportional to the frequency and
the capacitance.

A comparison of Eq. (7.16) with the
equation of source voltage, Eq. (7.1) shows that
the current is π/2 ahead of voltage.

Figure 7.8(a) shows the phasor diagram at an instant t
1
. Here the current

phasor I is π/2 ahead of the voltage phasor V as they rotate
counterclockwise. Figure 7.8(b) shows the variation of voltage and current

with time. We see that the current reaches its maximum value earlier than
the voltage by one-fourth of a period.

The instantaneous power supplied to the capacitor is

p
c
 = i v = i

m
 cos(ωt)v

m
 sin(ωt)

    = i
m
v

m
 cos(ωt) sin(ωt)

    sin(2 )
2

m mi v
tω= (7.19)

So, as in the case of an inductor, the average power

sin(2 ) sin(2 ) 0
2 2

m m m m
C

i v i v
P t tω ω= = =

since <sin (2ωt)> = 0 over a complete cycle.

Thus, we see that in the case of an inductor, the current lags the voltage
by π/2 and in the case of a capacitor, the current leads the voltage by π/2.

Example 7.3 A lamp is connected in series with a capacitor. Predict

your observations for dc and ac connections. What happens in each
case if the capacitance of the capacitor is reduced?

Solution When a dc source is connected to a capacitor, the capacitor

gets charged and after charging no current flows in the circuit and
the lamp will not glow. There will be no change even if C is reduced.
With ac source, the capacitor offers capacitative reactance (1/ωC )

and the current flows in the circuit. Consequently, the lamp will shine.
Reducing C will increase reactance and the lamp will shine less brightly
than before.

Example 7.4 A 15.0 µF capacitor is connected to a 220 V, 50 Hz source.
Find the capacitive reactance and the current (rms and peak) in the
circuit. If the frequency is doubled, what happens to the capacitive

reactance and the current?

Solution  The capacitive reactance is

F
6

1 1
212

2 2 (50Hz)(15.0 10 )
CX

Cν −= = = Ω
π π ×

The rms current is

 E
X

A
M

P
L
E
 7

.3
 E

X
A
M

P
L
E
 7

.4
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X
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.5
 E

X
A

M
P
L
E
 7

.4

V
A

220
1.04

212C

V
I

X
= = =

Ω

The peak current is

2 (1.41)(1.04 ) 1.47mi I A A= = =

This current oscillates between +1.47A and –1.47 A, and is ahead of

the voltage by p/2.

If the frequency is doubled, the capacitive reactance is halved and

consequently, the current is doubled.

Example 7.5 A light bulb and an open coil inductor are connected to

an ac source through a key as shown in Fig. 7.9.

FIGURE 7.9

The switch is closed and after sometime, an iron rod is inserted into

the interior of the inductor. The glow of the light bulb (a) increases; (b)

decreases; (c) is unchanged, as the iron rod is inserted. Give your

answer with reasons.

Solution  As the iron rod is inserted, the magnetic field inside the coil

magnetizes the iron increasing the magnetic field inside it. Hence,

the inductance of the coil increases. Consequently, the inductive

reactance of the coil increases. As a result, a larger fraction of the

applied ac voltage appears across the inductor, leaving less voltage

across the bulb. Therefore, the glow of the light bulb decreases.

7.6  AC VOLTAGE APPLIED TO A SERIES  LCR CIRCUIT

Figure 7.10 shows a series LCR circuit connected to an ac source e. As

usual, we take the voltage of the source to be v = v
m 

sin wt.

If q is the charge on the capacitor and i the
current, at time t, we have, from Kirchhoff’s loop

rule:

d

d

i q
L i R v

t C
+ + = (7.20)

We want to determine the instantaneous

current i and its phase relationship to the applied
alternating voltage v. We shall solve this problem

by two methods. First, we use the technique of

phasors and in the second method, we solve
Eq. (7.20) analytically to obtain the time–

dependence of i .

FIGURE 7.10 A series LCR circuit
connected to an ac source.

2024-25



187

Alternating Current

7.6.1  Phasor-diagram solution

From the circuit shown in Fig. 7.10, we see that the resistor, inductor

and capacitor are in series. Therefore, the ac current in each element is

the same at any time, having the same amplitude and phase. Let it be

i = i
m
 sin(wt+f ) (7.21)

where f is the phase difference between the voltage across the source and

the current in the circuit. On the basis of what we have learnt in the previous
sections, we shall construct a phasor diagram for the present case.

Let I be the phasor representing the current in the circuit as given by

Eq. (7.21). Further, let V
L
, V

R
, V

C
, and V represent the voltage across the

inductor, resistor, capacitor and the source, respectively. From previous

section, we know that V
R
 is parallel to I, V

C
 is p/2

behind I and V
L
 is  p/2 ahead of I. V

L
, V

R
, V

C
 and I

are shown in Fig. 7.11(a) with apppropriate phase-

relations.

The length of these phasors or the amplitude
of V

R
, V

C
 and V

L
 are:

v
Rm

 = i
m
 R, v

Cm
 = i

m
 X

C
,
 
v

Lm 
=

 
i
m 

X
L

(7.22)

The voltage Equation (7.20) for the circuit can
be written as

v
L
 + v

R
 + v

C
 = v (7.23)

The phasor relation whose vertical component
gives the above equation is

V
L
 + V

R
 + V

C
 = V (7.24)

This relation is represented in Fig. 7.11(b). Since
V

C
  and V

L
 are always along the same line and in

opposite directions, they can be combined into a single phasor (V
C
 + V

L
)

which has a magnitude ½v
Cm

 – v
Lm
½. Since V is represented as the

hypotenuse of a right-triangle whose sides are V
R
 and (V

C
 + V

L
), the

pythagorean theorem gives:

( )22 2
m Rm Cm Lmv v v v= + −

Substituting the values of v
Rm

, v
Cm

, and v
Lm

 from Eq. (7.22) into the above

equation, we have

2 2 2( ) ( )m m m C m Lv i R i X i X= + −

     = + − i R X Xm C L
2 2 2( )

or,  2 2( )

m
m

C L

v
i

R X X
=

+ −
[7.25(a)]

By analogy to the resistance in a circuit, we introduce the impedance Z

in an ac circuit:

m
m

v
i

Z
= [7.25(b)]

where 2 2( )C LZ R X X= + − (7.26)

FIGURE 7.11 (a) Relation between the
phasors V

L
, V

R
, V

C
, and I, (b) Relation

between the  phasors V
L
, V

R
, and (V

L
 + V

C
)

for the circuit in Fig. 7.10.
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Since phasor I is always parallel to phasor V
R
, the phase angle f

is the angle between V
R
 and V and can be determined from

Fig. 7.12:

tan Cm Lm

Rm

v v

v
φ −

=

Using Eq. (7.22), we have

tan C LX X

R
φ −

= (7.27)

Equations (7.26) and (7.27) are graphically shown in Fig. (7.12).

This is called Impedance diagram which is a right-triangle with

Z as its hypotenuse.
Equation 7.25(a) gives the amplitude of the current and Eq. (7.27)

gives the phase angle. With these, Eq. (7.21) is completely specified.

If X
C
 > X

L
, f is positive and the circuit is predominantly capacitive.

Consequently, the current in the circuit leads the source voltage. If

X
C
 < X

L
, f is negative and the circuit is predominantly inductive.

Consequently, the current in the circuit lags  the source voltage.
Figure 7.13 shows the phasor diagram and variation of v and i with w t

for the case X
C
 > X

L
.

Thus, we have obtained the amplitude
and phase of current for an LCR series circuit

using the technique of phasors. But this

method of analysing ac circuits suffers from
certain disadvantages. First, the phasor

diagram say nothing about the initial

condition. One can take any arbitrary value
of t (say, t

1
, as done throughout this chapter)

and draw different phasors which show the

relative angle between different phasors.
The solution so obtained is called the

steady-state solution. This is not a general

solution. Additionally, we do have a
transient solution which exists even for

v = 0. The general solution is the sum of the

transient solution and the steady-state
solution. After a sufficiently long time, the effects of the transient solution

die out and the behaviour of the circuit is described by the steady-state

solution.

7.6.2  Resonance

An interesting characteristic of the series RLC circuit is the phenomenon

of resonance. The phenomenon of resonance is common among systems
that have a tendency to oscillate at a particular frequency. This frequency

is called the system’s natural frequency. If such a system is driven by an

energy source at a frequency that is near the natural frequency, the
amplitude of oscillation is found to be large. A familiar example of this

phenomenon is a child on a swing. The swing has a natural frequency

for swinging back and forth like a pendulum. If the child pulls on the

FIGURE 7.12  Impedance

diagram.

FIGURE 7.13 (a) Phasor diagram of V and I.

(b) Graphs of v and i versus w t for a series LCR

circuit where X
C
 > X

L
.
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rope at regular intervals and the frequency of the pulls is almost the

same as the frequency of swinging, the amplitude of the swinging will be

large (Chapter 13, Class XI).
For an RLC circuit driven with voltage of amplitude v

m
 and frequency

w, we found that the current amplitude is given by

2 2( )

m m
m

C L

v v
i

Z R X X
= =

+ −

with X
c
 = 1/wC and X

L
 = w L . So if w is varied, then at a particular frequency

w
0
, X

c
 = X

L
, and the impedance is minimum ( )2 20Z R R= + = . This

frequency is called the resonant frequency:

0

0

1
orc LX X L

C
ω

ω
= =

or   0

1

LC
ω = (7.28)

At resonant frequency, the current amplitude

is maximum; i
m
 = v

m
/R.

Figure 7.16 shows the variation of i
m
 with w

in a RLC series circuit with L = 1.00 mH, C =

1.00 nF for two values of R: (i) R = 100 W

and (ii) R = 200 W. For the source applied v
m
 =

100 V. w
0
 for this case is 

1

LC

  
     = 1.00×106

rad/s.

We see that the current amplitude is

maximum at the resonant frequency. Since i
m 

=

v
m 

/ R at resonance, the current amplitude for

case (i) is twice to that for case (ii).

Resonant circuits have a variety of applications, for example, in the

tuning  mechanism of a radio or a TV set. The antenna of a radio accepts

signals from many broadcasting stations. The signals picked up in the

antenna acts as a source in the tuning circuit of the radio, so the circuit

can be driven at many frequencies. But to hear one particular radio

station, we tune the radio. In tuning, we vary the capacitance of a

capacitor in the tuning circuit such that the resonant frequency of the

circuit becomes nearly equal to the frequency of the radio signal received.

When this happens, the amplitude of the current with the frequency of

the signal of the particular radio station in the circuit is maximum.

It is important to note that resonance phenomenon is exhibited by a

circuit only if both L and C are present in the circuit. Only then do the

voltages across L and C cancel each other (both being out of phase)

and the current amplitude is v
m
/R, the total source voltage appearing

across R. This means that we cannot have resonance in a RL or

RC circuit.

FIGURE 7.14 Variation of i
m
 with w for two

cases: (i) R = 100 W, (ii) R = 200 W,

L = 1.00 mH.
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Example 7.6 A resistor of 200 W and a capacitor of 15.0 mF are

connected in series to a 220 V, 50 Hz ac source. (a) Calculate the
current in the circuit; (b) Calculate the voltage (rms) across the
resistor and the capacitor. Is the algebraic sum of these voltages

more than the source voltage? If yes, resolve the paradox.

Solution

Given

F
6200 , 15.0 15.0 10 FR C −= Ω = µ = ×

220 V, 50HzV ν= =
(a) In order to calculate the current, we need the impedance of

the circuit. It is

2 2 2 2(2 )CZ R X R Cπ ν −= + = +

   F
2 6 2(200 ) (2 3.14 50 15.0 10 )− −= Ω + × × × ×

   2 2(200 ) (212.3 )= Ω + Ω

   291.67= Ω

Therefore, the current in the circuit is

V220
0.755 A

291.5

V
I

Z
= = =

Ω

(b) Since the current is the same throughout the circuit, we have

(0.755 A)(200 ) 151VRV I R= = Ω =

(0.755 A)(212.3 ) 160.3 VC CV I X= = Ω =
The algebraic sum of the two voltages, V

R
 and V

C
 is 311.3 V which

is more than the source voltage of 220 V. How to resolve this

paradox? As you have learnt in the text, the two voltages are not
in the same phase. Therefore, they cannot be added like ordinary

numbers. The two voltages are out of phase by ninety degrees.

Therefore, the total of these voltages must be obtained using the
Pythagorean theorem:

2 2
R C R CV V V+ = +

= 220 V
Thus, if the phase difference between two voltages is properly taken

into account, the total voltage across the resistor and the capacitor
is equal to the voltage of the source. E

X
A

M
P
L
E
 7

.6

7.7  POWER IN AC CIRCUIT: THE POWER FACTOR

We have seen that a voltage v = v
m
 sinwt applied to a series RLC circuit

drives a current in the circuit given by i = i
m
 sin(wt + f) where

m
m

v
i

Z
=   and φ =

−





−tan 1 X X

R

C L

Therefore, the instantaneous power p supplied by the source is
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( ) [ ]sin sin( )m mp v i v t i tω ω φ= = × +

[ ]cos cos(2 )
2

m mv i
tφ ω φ= − + (7.29)

The average power over a cycle is given by the average of the two terms in
R.H.S. of Eq. (7.29). It is only the second term which is time-dependent.

Its average is zero (the positive half of the cosine cancels the negative
half). Therefore,

cos
2

m mv i
P φ= cos

2 2

m mv i φ=

cosV I φ= [7.30(a)]

This can also be written as,

2
cosP I Z φ= [7.30(b)]

So, the average power dissipated depends not only on the voltage and

current but also on the cosine of the phase angle φ between them. The
quantity cosφ is called the power factor. Let us discuss the following
cases:

Case (i) Case (i) Case (i) Case (i) Case (i) Resistive circuit: If the circuit contains only pure R, it is called
resistive. In that case φ = 0, cos φ = 1. There is maximum power dissipation.

Case (ii) Case (ii) Case (ii) Case (ii) Case (ii) Purely inductive or capacitive circuit: If the circuit contains

only an inductor or capacitor, we know that the phase difference between
voltage and current is π/2. Therefore, cos φ = 0, and no power is dissipated
even though a current is flowing in the circuit. This current is sometimes

referred to as wattless current.

Case (iii) Case (iii) Case (iii) Case (iii) Case (iii) LCR series circuit: In an LCR series circuit, power dissipated is

given by Eq. (7.30) where φ = tan–1 (Xc 
– XL 

)/ R. So,  φ may be non-zero  in
a RL or RC or RCL circuit. Even in such cases, power is dissipated only in
the resistor.

Case (iv)Case (iv)Case (iv)Case (iv)Case (iv) Power dissipated at resonance in LCR circuit: At resonance

Xc – XL= 0, and φ = 0. Therefore, cosφ = 1 and P = I 2Z = I2 R. That is,
maximum power is dissipated in a circuit (through R) at resonance.

Example 7.7 Example 7.7 Example 7.7 Example 7.7 Example 7.7 (a) For circuits used for transporting electric power, a
low power factor implies large power loss in transmission. Explain.

(b) Power factor can often be improved by the use of a capacitor of
appropriate capacitance in the circuit. Explain.

SolutionSolutionSolutionSolutionSolution (a) We know that P = I V cosφ where cosφ is the power factor.
To supply a given power at a given voltage, if cosφ is small, we have to

increase current accordingly. But this will lead to large power loss
(I2R) in transmission.

(b)Suppose in a circuit, current I lags the voltage by an angle φ. Then
power factor cosφ =R/Z.

We can improve the power factor (tending to 1) by making Z tend to
R. Let us understand, with the help of a phasor diagram (Fig. 7.15)
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how this can be achieved. Let us resolve I into two components. I
p

along the applied voltage V and I
q
 perpendicular to the applied

voltage. I
q
 as you have learnt in Section 7.7, is called the wattless

component since corresponding to this component of current, there

is no power loss. I
P
  is known as the power component because it is

in phase with the voltage and corresponds to power loss in the circuit.

It’s clear from this analysis that if we want to improve power factor,

we must completely neutralize the lagging wattless current I
q
 by an

equal leading wattless current I¢
q
. This can be done by connecting

a capacitor of appropriate value in parallel so that I
q
 and I¢

q
 cancel

each other and P is effectively I
p
 V.

Example 7.8 A sinusoidal voltage of peak value 283 V and frequency
50 Hz is applied to a series LCR circuit in which
R = 3 W, L = 25.48 mH, and C = 796 mF. Find (a) the impedance of the

circuit; (b) the phase difference between the voltage across the source
and the current; (c) the power dissipated in the circuit; and (d) the
power factor.

Solution

(a) To find the impedance of the circuit, we first calculate X
L
 and X

C
.

X
L
 = 2 pnL

    = 2 × 3.14 × 50 × 25.48 × 10–3 W = 8 W

1

2
CX

Cν
=

π

6

1
4

2 3.14 50 796 10−= = Ω
× × × ×

Therefore,

2 2 2 2( ) 3 (8 4)L CZ R X X= + − = + −
    = 5 W

(b) Phase difference, f = tan–1 C LX X

R

−

=
−





= − °−tan .1 4 8

3
53 1

 E
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A
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Since f is negative, the current in the circuit lags the voltage
across the source.

(c) The power dissipated in the circuit is

2P I R=

Now, I
im= = 





=
2

1

2

283

5
40A

Therefore, A W
2(40 ) 3 4800P = × Ω =

(d) Power factor = � �cos cos –53.1 0.6� � � �

Example 7.9 Suppose the frequency of the source in the previous
example can be varied. (a) What is the frequency of the source at

which resonance occurs? (b) Calculate the impedance, the current,
and the power dissipated at the resonant condition.

Solution

(a) The frequency at which the resonance occurs is

0
3 6

1 1

25.48 10 796 10LC
ω

− −
= =

× × ×

     222.1rad/s=

0 221.1
Hz 35.4Hz

2 2 3.14
r

ων = = =
π ×

(b) The impedance Z at resonant condition is equal to the resistance:

3Z R= = Ω

The rms current at resonance is

= = = 





=
V

Z

V

R

283

2

1

3
66 7. A

The power dissipated at resonance is

2 2(66.7) 3 13.35 kWP I R= × = × =

You can see that in the present case, power dissipated
at resonance is more than the power dissipated in Example 7.8.
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Example 7.10 At an airport, a person is made to walk through the

doorway of a metal detector, for security reasons. If she/he is carrying

anything made of metal, the metal detector emits a sound. On what

principle does this detector work?

Solution  The metal detector works on the principle of resonance in

ac circuits. When you walk through a metal detector, you are,

in fact, walking through a coil of many turns. The coil is connected to

a capacitor tuned so that the circuit is in resonance. When

you walk through with metal in your pocket, the impedance of the

circuit changes – resulting in significant change in current in the

circuit. This change in current is detected and the electronic circuitry

causes a sound to be emitted as an alarm.
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7.8  TRANSFORMERS

For many purposes, it is necessary to change (or transform) an alternating

voltage from one to another of greater or smaller value. This is done with

a device called transformer using the principle of mutual induction.

A transformer consists of two sets of coils, insulated from each other.

They are wound on a soft-iron core, either one on top of the other as in

Fig. 7.16(a) or on separate limbs of the core as in Fig. 7.16(b). One of the

coils called the primary coil has N
p
 turns. The other coil is called the

secondary coil; it has N
s
 turns. Often the primary coil is the input coil

and the secondary coil is the output coil of the transformer.

FIGURE 7.16 Two arrangements for winding of primary and secondary coil in a transformer:
(a) two coils on top of each other, (b) two coils on separate limbs of the core.

When an alternating voltage is applied to the  primary, the resulting
current produces an alternating magnetic flux which links the secondary
and induces an emf in it. The value of this emf depends on the number of

turns in the secondary. We consider an ideal transformer in which the
primary has negligible resistance and all the flux in the core links both
primary and secondary windings. Let f be the flux in each turn in the core

at time t due to current in the primary when a voltage v
p
 is applied to it.

Then the induced emf or voltage e
s
, in the secondary with N

s
 turns is

d

d
s sN

t

φε = − (7.31)

The alternating flux f also induces an emf, called back emf in the
primary. This is

d

d
p pN

t

φε = − (7.32)

But e
p
 = v

p
. If this were not so, the primary current would be infinite

since the  primary has zero resistance (as assumed). If the secondary is
an open circuit or the current taken from it is small, then to a good

approximation
e

s
 = v

s
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where  v
s
 is the voltage across the secondary. Therefore, Eqs. (7.31) and

(7.32) can be written as

s s

d
v N

d t

φ
= − [7.31(a)]

p p

d
v N

d t

φ
= − [7.32(a)]

From Eqs. [7.31 (a)] and [7.32 (a)], we have

s s

p p

v N

v N
= (7.33)

Note that the above relation has been obtained using three
assumptions: (i) the primary resistance and current are small; (ii) the
same flux links both the primary and the secondary as very little flux

escapes from the core, and (iii) the secondary current is small.
If the transformer is assumed to be 100% efficient (no energy losses),

the power input is equal to the power output, and since p = i v,

i
p
v

p
 = i

s
v

s
(7.34)

Although some energy is always lost, this is a good approximation,

since a well designed transformer may have an efficiency of more than
95%. Combining Eqs. (7.33) and (7.34), we have

p s s

s p p

i v N

i v N
= = (7.35)

Since i and v both oscillate with the same frequency as the ac source,

Eq. (7.35) also gives the ratio of the amplitudes or rms values of
corresponding quantities.

Now, we can see how a transformer affects the voltage and current.

We have:

V
N

N
Vs

s

p

p=








    and  I

N

N
Is

p

s

p=




 (7.36)

That is, if the secondary coil has a greater number of turns than the
primary (N

s
 > N

p
), the voltage is stepped up (V

s
 > V

p
). This type of

arrangement is called a step-up transformer. However, in this arrangement,

there is less current in the secondary than in the primary (N
p
/N

s
 < 1 and I

s

< I
p
). For example, if the primary coil of a transformer has 100 turns and

the secondary has 200 turns,  N
s
/N

p
 = 2 and N

p
/N

s
=1/2. Thus, a 220V

input at 10A will step-up to 440 V output at 5.0 A.
If the secondary coil has less turns than the primary (N

s
 < N

p
),

we have a step-down transformer. In this case, V
s
 < V

p
 and I

s
 > I

p
. That

is, the voltage is stepped down, or reduced, and the current
is increased.

The equations obtained above apply to ideal transformers (without

any energy losses). But in actual transformers, small energy losses do
occur due to the following reasons:

(i) Flux Leakage: There is always some flux leakage; that is, not all of
the flux due to primary passes through the secondary due to poor
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SUMMARY

1. An alternating voltage sin= ω
m

v v t  applied to a resistor R drives a

current i = i
m
 sinwt in the resistor, 

m
m

v
i

R
= . The current is in phase with

the applied voltage.

2. For an alternating current i = i
m
 sin wt passing through a resistor R, the

average power loss P (averaged over a cycle) due to joule heating is
( 1/2 )i2

m
R. To express it in the same form as the dc power (P = I 2R), a

special value of current is used. It is called root mean square (rms)
current and is donoted by I:

0.707
2

m
m

i
I i= =

Similarly, the rms voltage is defined by

0.707
2

m
m

v
V v= =

We have P = IV = I2R

3. An ac voltage v = v
m
 sin wt applied to a pure inductor L, drives a current

in the inductor i = i
m
 sin (wt – p/2), where i

m
 = v

m
/X

L
. X

L
 = wL is called

inductive reactance. The current in the inductor lags the voltage by
p/2. The average power supplied to an inductor over one complete cycle
is zero.

design of the core or the air gaps in the core. It can be reduced by
winding the primary and secondary coils one over the other.

(ii) Resistance of the windings: The wire used for the windings has some
resistance and so, energy is lost due to heat produced in the wire

(I 2R). In high current, low voltage windings, these are minimised by
using thick wire.

(iii) Eddy currents: The alternating magnetic flux induces eddy currents

in the iron core and causes heating. The effect is reduced by using a
laminated core.

(iv) Hysteresis: The magnetisation of the core is repeatedly reversed by
the alternating magnetic field. The resulting expenditure of energy in
the core appears as heat and is kept to a minimum by using a magnetic

material which has a low hysteresis loss.
The large scale transmission and distribution of electrical energy over

long distances is done with the use of transformers. The voltage output

of the generator is stepped-up (so that current is reduced and
consequently, the I 2R loss is cut down). It is then transmitted over long
distances to an area sub-station near the consumers. There the voltage

is stepped down. It is further stepped down at distributing sub-stations
and utility poles before a power supply of 240 V reaches our homes.
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4. An ac voltage v = v
m
 sinwt applied to a capacitor drives a current in the

capacitor: i = i
m
 sin (wt + p/2). Here,

1
,m

m C

C

v
i X

X Cω
= =  is called capacitive reactance.

The current through the capacitor is p/2 ahead of the applied voltage.
As in the case of inductor, the average power supplied to a capacitor
over one complete cycle is zero.

5. For a series RLC circuit driven by voltage v = v
m
 sin wt, the current is

given by i = i
m
 sin (wt + f )

where

( )22

m
m

C L

v
i

R X X
=

+ −

and 1tan C LX X

R
φ − −

=

( )22
C LZ R X X= + −  is called the impedance of the circuit.

The average power loss over a complete cycle is given by

P = V I cosf

The term cosf is called the power factor.

6. In a purely inductive or capacitive circuit, cosf = 0 and no power is
dissipated even though a current is flowing in the circuit. In such cases,
current is referred to as a wattless current.

7. The phase relationship between current and voltage in an ac circuit
can be shown conveniently by representing voltage and current by
rotating vectors called phasors. A phasor is a vector which rotates
about the origin with angular speed w. The magnitude of a phasor
represents the amplitude or peak value of the quantity (voltage or
current) represented by the phasor.

The analysis of an ac circuit is facilitated by the use of a phasor
diagram.

8. A transformer consists of an iron core on which are bound a primary
coil of N

p
 turns and a secondary coil of N

s
 turns. If the primary coil is

connected to an ac source, the primary and secondary voltages are
related by

V
N

N
Vs

s

p

p=










and the currents are related by

I
N

N
Is

p

s

p=






If the secondary coil has a greater number of turns than the primary, the
voltage is stepped-up (V

s
 > V

p
). This type of arrangement is called a step-

up transformer. If the secondary coil has turns less than the primary, we
have a step-down transformer.
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 Physical quantity Symbol Dimensions Unit Remarks

rms voltage V [M L
2 
T

–3 
A

–1
] V V = 

2

mv
, v

m
 is the

amplitude of the ac voltage.

rms current I [ A] A I = 
2

mi , i
m
 is the amplitude of

the ac current.

Reactance:
     Inductive X

L
[M

 
L

2 
T

–3 
A

–2
] X

L
 =  L

     Capacitive X
C

[M
 
L

2 
T

–3 
A

–2
] X

C
 = 1/ C

Impedance Z [M
 
L

2 
T

–3 
A

–2
] Depends on elements

present in the circuit.

Resonant w
r
 or w

0
[T

–1
] Hz w

0 
LC

1
  for a

frequency
series RLC circuit

Quality factor Q Dimensionless 0

0

1L
Q

R C R

ω
ω

= =  for a series

RLC circuit.

Power factor Dimensionless = cosf, f is the phase
difference between voltage
applied and current in

the circuit.

POINTS TO PONDER

1. When a value is given for ac voltage or current, it is ordinarily the rms

value. The voltage across the terminals of an outlet in your room is

normally 240 V. This refers to the rms value of the voltage. The amplitude

of this voltage is

V2 2(240) 340mv V= = =

2. The power rating of an element used in ac circuits refers to its average

power rating.

3. The power consumed in an ac circuit is never negative.

4. Both alternating current and direct current are measured in amperes.

But how is the ampere defined for an alternating current? It cannot be

derived from the mutual attraction of two parallel wires carrying ac

currents, as the dc ampere is derived. An ac current changes direction
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with the source frequency and the attractive force would average to

zero. Thus, the ac ampere must be defined in terms of some property

that is independent of the direction of the current. Joule heating

is such a property, and there is one ampere of rms value of

alternating current in a circuit if the current produces the same

average heating effect as one ampere of dc current would produce

under the same conditions.

5. In an ac circuit, while adding voltages across different elements, one

should take care of their phases properly. For example, if V
R
 and V

C

are voltages across R and C, respectively in an RC circuit, then the

total voltage across RC combination is 2 2
RC R CV V V= +  and not

V
R
 + V

C
 since V

C
 is p/2 out of phase of V

R
.

6. Though in a phasor diagram, voltage and current are represented by
vectors, these quantities are not really vectors themselves. They are
scalar quantities. It so happens that the amplitudes and phases of
harmonically varying scalars combine mathematically in the same
way as do the projections of rotating vectors of corresponding
magnitudes and directions. The ‘rotating vectors’ that represent
harmonically varying scalar quantities are introduced only to provide
us with a simple way of adding these quantities using a rule that
we already know as the law of vector addition.

7. There are no power losses associated with pure capacitances and pure
inductances in an ac circuit. The only element that dissipates energy
in an ac circuit is the resistive element.

8. In a RLC circuit, resonance phenomenon occur when X
L
 = X

C
 or

0

1

LC
ω = . For resonance to occur, the presence of both L and C

elements in the circuit is a must. With only one of these (L or C )
elements, there is no possibility of voltage cancellation and hence,
no resonance is possible.

9. The power factor in a RLC circuit is a measure of how close the
circuit is to expending the maximum power.

10. In generators and motors, the roles of input and output are
reversed. In a motor, electric energy is the input and mechanical
energy is the output. In a generator, mechanical energy is the
input and electric energy is the output. Both devices simply
transform energy from one form to another.

11. A transformer (step-up) changes a low-voltage into a high-voltage.
This does not violate the law of conservation of energy. The
current is reduced by the same proportion.
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EXERCISES

7.1 A 100 W resistor is connected to a 220 V, 50 Hz ac supply.

(a) What is the rms value of current in the circuit?
(b) What is the net power consumed over a full cycle?

7.2 (a) The peak voltage of an ac supply is 300 V. What is the rms voltage?
(b) The rms value of current in an ac circuit is 10 A. What is the

peak current?
7.3 A 44 mH inductor is connected to 220 V, 50 Hz ac supply. Determine

the rms value of the current in the circuit.

7.4  A 60 mF capacitor is connected to a 110 V, 60 Hz ac supply. Determine
the rms value of the current in the circuit.

7.5 In Exercises 7.3 and 7.4, what is the net power absorbed by each
circuit over a complete cycle. Explain your answer.

7.6 A charged 30 mF capacitor is connected to a 27 mH inductor. What is
the angular frequency of free oscillations of the circuit?

7.7 A series LCR circuit with R = 20 W, L = 1.5 H and C = 35 mF is connected
to a variable-frequency 200 V ac supply. When the frequency of the
supply equals the natural frequency of the circuit, what is the average
power transferred to the circuit in one complete cycle?

7.8 Figure 7.17 shows a series LCR circuit connected to a variable
frequency 230 V source. L = 5.0 H, C = 80mF, R = 40 W.

(a) Determine the source frequency which drives the circuit in
resonance.

(b) Obtain the impedance of the circuit and the amplitude of current
at the resonating frequency.

(c) Determine the rms potential drops across the three elements of
the circuit. Show that the potential drop across the LC

combination is zero at the resonating frequency.

FIGURE 7.17
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Chapter Eight

ELECTROMAGNETIC

WAVES

8.1  INTRODUCTION

In Chapter 4, we learnt that an electric current produces magnetic field
and that two current-carrying wires exert a magnetic force on each other.
Further, in Chapter 6, we have seen that a magnetic field changing with
time gives rise to an electric field. Is the converse also true? Does an
electric field changing with time give rise to a magnetic field? James Clerk
Maxwell (1831-1879), argued that this was indeed the case – not only
an electric current but also a time-varying electric field generates magnetic
field. While applying the Ampere’s circuital law to find magnetic field at a
point outside a capacitor connected to a time-varying current, Maxwell
noticed an inconsistency in the Ampere’s circuital law. He suggested the
existence of an additional current, called by him, the displacement
current to remove this inconsistency.

Maxwell formulated a set of equations involving electric and magnetic
fields, and their sources, the charge and current densities. These
equations are known as Maxwell’s equations. Together with the Lorentz
force formula (Chapter 4), they mathematically express all the basic laws
of electromagnetism.

The most important prediction to emerge from Maxwell’s equations
is the existence of electromagnetic waves, which are (coupled) time-
varying electric and magnetic fields that propagate in space. The speed
of the waves,  according to these equations, turned out to be very close to
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the speed of light( 3 ×108 m/s), obtained from optical
measurements. This led to the remarkable conclusion
that light is an electromagnetic wave. Maxwell’s work
thus unified the domain of electricity, magnetism and
light. Hertz, in 1885, experimentally demonstrated the
existence of electromagnetic waves. Its technological use
by Marconi and others led in due course to the
revolution in communication that we are witnessing
today.

In this chapter, we first discuss the need for
displacement current and its consequences. Then we
present a descriptive account of electromagnetic waves.
The broad spectrum of electromagnetic waves,
stretching from g rays (wavelength ~10–12 m) to long
radio waves (wavelength ~106 m) is described.

8.2  DISPLACEMENT CURRENT

We have seen in Chapter 4 that an electrical current
produces a magnetic field around it. Maxwell showed
that for logical consistency, a changing electric field must

also produce a magnetic field. This effect is of great
importance because it explains the existence of radio
waves, gamma rays and visible light, as well as all other
forms of electromagnetic waves.

To see how a changing electric field gives rise to
a magnetic field, let us consider the process of
charging of a capacitor and apply Ampere’s circuital
law given by (Chapter 4)

“B.dl = m0 i (t )           (8.1)

to find magnetic  field at a point outside the capacitor.
Figure 8.1(a)  shows a parallel plate capacitor C which
is a part of circuit through which a time-dependent
current i (t ) flows . Let us find the magnetic field at a
point such as P, in a region outside the parallel plate
capacitor.  For this, we consider a plane circular loop of
radius r whose plane is perpendicular to the direction
of the current-carrying wire, and which is centred
symmetrically with respect to the wire [Fig. 8.1(a)]. From
symmetry, the magnetic field is directed along the
circumference of the circular loop and is the same in
magnitude at all points on the loop so that if B is the
magnitude of the field, the left side of Eq. (8.1) is B (2p r).
So we have

B (2pr) = m0i (t )    (8 .2)

J
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James Clerk Maxwell
(1831 – 1879) Born in
Edinburgh, Scotland,
was among the greatest
physicists of the
nineteenth century. He
derived the thermal
velocity distribution of
molecules in a gas and
was among the first to
obtain reliable
estimates of molecular
parameters from
measurable quantities
like viscosity, etc.
Maxwell’s greatest
acheivement was the
unification of the laws of
electricity and
magnetism (discovered
by Coulomb, Oersted,
Ampere and Faraday)
into a consistent set of
equations now called
Maxwell’s equations.
From these he arrived at
the most important
conclusion that light is
an electromagnetic
wave. Interestingly,
Maxwell did not agree
with the idea (strongly
suggested by the
Faraday’s laws of
electrolysis) that
electricity was
particulate in nature.
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Now, consider a different surface, which has the same boundary. This
is a pot like surface [Fig. 8.1(b)] which nowhere touches the current, but
has its bottom between the capacitor plates; its mouth is the circular
loop mentioned above. Another such surface is shaped like a tiffin box
(without the lid) [Fig. 8.1(c)]. On applying Ampere’s circuital law to such
surfaces with the same perimeter, we find that the left hand side of
Eq. (8.1) has not changed but the right hand side is zero and not m

0
i,

since no current passes through the surface of Fig. 8.1(b) and (c). So we
have a contradiction; calculated one way, there is a magnetic field at a
point P; calculated another way, the magnetic field at P is zero.
Since the contradiction arises from our use of Ampere’s circuital law,
this law must be missing something. The missing term must be such
that one gets the same magnetic field at point P,  no matter what surface
is used.

We can actually guess the missing term by looking carefully at
Fig. 8.1(c). Is there anything passing through the surface S between the
plates of the capacitor? Yes, of course, the electric field! If the plates of the
capacitor have an area A, and a total charge Q, the magnitude of the
electric field E between the plates is (Q/A)/e0 (see Eq. 2.41). The field is
perpendicular to the surface S of Fig. 8.1(c). It has the same magnitude
over the area A of the capacitor plates, and vanishes outside it. So what
is the electric flux F

E
 through the surface S ? Using Gauss’s law, it is

E
0 0

1
= =

Q Q
A A

A
Φ

ε ε
=E (8.3)

Now if the charge Q on the capacitor plates changes with time, there is a
current i = (dQ/dt), so that using Eq. (8.3), we have

d
d

d
d

d
d

ΦE

t t

Q Q

t
=







=
ε ε0 0

1

This implies that for consistency,

ε0
d
d
ΦE

t





  = i (8.4)

This is the missing term in Ampere’s circuital law. If we generalise
this law by adding to the total current carried by conductors through
the surface, another term which is e0 times the rate of change of electric
flux through the same surface, the total has the same value of current i
for all surfaces. If this is done, there is no contradiction in the value of B
obtained anywhere using the generalised Ampere’s law. B at the point P
is non-zero no matter which surface is used for calculating it. B at a
point P outside the plates [Fig. 8.1(a)] is the same as at a point M just
inside, as it should be. The current carried by conductors due to flow of
charges is called conduction current. The current, given by Eq. (8.4), is a
new term, and is due to changing electric field (or electric displacement,

an old term still used sometimes). It is, therefore, called displacement

current or Maxwell’s displacement current. Figure 8.2 shows the electric
and magnetic fields inside the parallel plate capacitor discussed above.

The generalisation made by Maxwell then is the following. The source
of a magnetic field is not just the conduction electric current due to flowing

FIGURE 8.1 A
parallel plate

capacitor C, as part of
a circuit through

which a time
dependent current

i (t) flows,  (a) a loop of
radius r, to determine

magnetic field at a
point P on the loop;

(b) a pot-shaped
surface passing

through the interior
between the capacitor

plates with the loop
shown in (a) as its

rim; (c) a tiffin-
shaped surface with
the circular loop as

its rim and a flat
circular bottom S

between the capacitor
plates. The arrows

show uniform electric
field between the
capacitor plates.
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charges, but also the time rate of change of electric field. More
precisely, the total current i is the sum of the conduction current
denoted by i

c
, and the displacement current denoted by id (= e0 (dF

E
/

dt)). So we have

0

d
d

E
c d ci i i i

t

Φε= + = + (8.5)

In explicit terms, this means that outside the capacitor plates,
we have only conduction current ic = i, and no displacement
current, i.e., i

d
 = 0. On the other hand, inside the capacitor, there is

no conduction current, i.e., ic = 0, and there is only displacement
current, so that i

d
 = i.

The generalised (and correct) Ampere’s circuital law has the same
form as Eq. (8.1), with one difference: “the total current passing
through any surface of which the closed loop is the perimeter” is
the sum of the conduction current and the displacement current.
The generalised law is

B lgÑ d =
d
d0µ µ ε0 0i

t
c

E+∫
Φ

(8.6)

and is known as Ampere-Maxwell law.
In all respects, the displacement current has the same physical

effects as the conduction current. In some cases, for example, steady
electric fields in a conducting wire, the displacement current may
be zero since the electric field E does not change with time. In other
cases, for example, the charging capacitor above, both conduction
and displacement currents may be present in different regions of
space. In most of the cases, they both may be present in the same
region of space, as there exist no perfectly conducting or perfectly
insulating medium. Most interestingly, there may be large regions
of space where there is no conduction current, but there is only a
displacement current due to time-varying electric fields. In such a
region, we expect a magnetic field, though there is no (conduction)

current source nearby! The prediction of such a displacement current
can be verified experimentally. For example, a magnetic field (say at point
M) between the plates of the capacitor in Fig. 8.2(a) can be measured and
is seen to be the same as that just outside (at P).

The displacement current has (literally) far reaching consequences.
One thing we immediately notice is that the laws of electricity and
magnetism are now more symmetrical*. Faraday’s law of induction states
that there is an induced emf equal to the rate of change of magnetic flux.
Now, since the emf between two points 1 and 2 is the work done per unit
charge in taking it from 1 to 2, the existence of an emf implies the existence
of an electric field. So, we can rephrase Faraday’s law of electromagnetic
induction by saying that a magnetic field, changing with time, gives rise
to an electric field. Then, the fact that an electric field changing with
time gives rise to a magnetic field, is the symmetrical counterpart, and is

FIGURE 8.2 (a) The
electric and magnetic
fields E and B between
the capacitor plates, at
the point M. (b) A cross
sectional view of Fig. (a).

* They are still not perfectly symmetrical; there are no known sources of magnetic
field (magnetic monopoles) analogous to electric charges which are sources of
electric field.
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a consequence of the displacement current being a source of a magnetic
field. Thus, time- dependent electric and magnetic fields give rise to each
other! Faraday’s law of electromagnetic induction and Ampere-Maxwell
law give a quantitative expression of this statement, with the current
being the total current, as in Eq. (8.5). One very important consequence
of this symmetry is the existence of electromagnetic waves, which we
discuss qualitatively in the next section.

MAXWELL’S EQUATIONS IN VACUUM

1. “E.dA = Q/✒0 (Gauss’s Law for electricity)

2. “B.dA = 0 (Gauss’s Law for magnetism)

3. “E.dl =
–d

d

B
Φ

t
l= (Faraday’s Law)

4. “B.dl ==
d

d
0

µ µ ε
0 0
i

t
c

E
+

Φ
(Ampere – Maxwell Law)

8.3  ELECTROMAGNETIC WAVES

8.3.1  Sources of electromagnetic waves

How are electromagnetic waves produced? Neither stationary charges
nor charges in uniform motion (steady currents) can be sources of
electromagnetic waves. The former produces only electrostatic fields, while
the latter produces magnetic fields that, however, do not vary with time.
It is an important result of Maxwell’s theory that accelerated charges
radiate electromagnetic waves. The proof of this basic result is beyond
the scope of this book, but we can accept it on the basis of rough,
qualitative reasoning. Consider a charge oscillating with some frequency.
(An oscillating charge is an example of accelerating charge.)   This
produces an oscillating electric field in space, which produces an
oscillating magnetic field, which in turn, is a source of oscillating electric
field, and so on. The oscillating electric and magnetic fields thus
regenerate each other, so to speak, as the wave propagates through the
space. The frequency of the electromagnetic wave naturally equals the
frequency of oscillation of the charge. The energy associated with the
propagating wave comes at the expense of the energy of the source – the
accelerated charge.

From the preceding discussion, it might appear easy to test the
prediction that light is an electromagnetic wave. We might think that all
we needed to do was to set up an ac circuit in which the current oscillate
at the frequency of visible light, say, yellow light. But, alas, that is not
possible. The frequency of yellow light is about 6 × 1014 Hz, while the
frequency that we get even with modern electronic circuits is hardly about
1011 Hz. This is why the experimental demonstration of electromagnetic
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wave had to come in the low frequency region (the radio

wave region), as in the Hertz’s experiment (1887).

Hertz’s successful experimental test of Maxwell’s

theory created a sensation and sparked off other

important works in this field. Two important

achievements in this connection deserve mention. Seven

years after Hertz, Jagdish Chandra Bose, working at

Calcutta (now Kolkata), succeeded in producing and

observing electromagnetic waves of much shorter
wavelength (25 mm to 5 mm). His experiment, like that
of Hertz’s, was confined to the laboratory.

At around the same time, Guglielmo Marconi in Italy
followed Hertz’s work and succeeded in transmitting
electromagnetic waves over distances of many kilometres.

Marconi’s experiment marks the beginning of the field of
communication using electromagnetic waves.

8.3.2  Nature of electromagnetic waves

It can be shown from Maxwell’s equations that electric

and magnetic fields in an electromagnetic wave are

perpendicular to each other, and to the direction of

propagation. It appears reasonable, say from our

discussion of the displacement current. Consider

Fig. 8.2. The electric field inside the plates of the capacitor

is directed perpendicular to the plates. The magnetic

field this gives rise to via the displacement current is

along the perimeter of a circle parallel to the capacitor

plates. So B and E are perpendicular in this case. This

is a general feature.

In Fig. 8.3, we show a typical example of a plane

electromagnetic wave propagating along the z direction

(the fields are shown as a function of the z coordinate, at

a given time t). The electric field E
x
 is along the x-axis,

and varies sinusoidally with z, at a given time. The

magnetic field B
y
 is along the y-axis, and again varies

sinusoidally with z. The electric and magnetic fields E
x

and B
y
 are perpendicular to each

other, and to the direction z of

propagation. We can write E
x
 and

B
y
 as follows:

E
x
= E

0
 sin (kz–wt ) [8.7(a)]

B
y
= B

0
 sin (kz–wt ) [8.7(b)]

Here k is related to the wave length
l of the wave by the usual

equation

2
k

λ
π= (8.8)

 E
X

A
M

P
L
E
 8

.1

Heinrich Rudolf Hertz

(1857 – 1894) German
physicist who was the
first to broadcast and

receive radio waves. He
produced electro-
magnetic waves, sent

them through space, and
measured their wave-
length and speed. He

showed that the nature
of their vibration,
reflection and refraction

was the same as that of
light and heat waves,
establishing their

identity for the first time.
He also pioneered
research on discharge of

electricity through gases,
and discovered the
photoelectric effect.
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FIGURE 8.3 A linearly polarised electromagnetic wave,
propagating in the z-direction with the oscillating electric field E
along the x-direction and the oscillating magnetic field B along

the y-direction.

2024-25



207

Electromagnetic

Waves

and ω   is the angular frequency. k is the magnitude of the wave vector (or

propagation vector) k and its direction describes the direction of
propagation of the wave. The speed of propagation of the wave is (ω/k ).
Using Eqs. [8.7(a) and (b)] for E

x
 and B

y 
 and Maxwell’s equations, one

finds that

ω = ck, where, c = 1/
0 0µ ε [8.9(a)]

The relation ω = ck is the standard one for waves (see for example,

Section 14.4 of class XI Physics textbook). This relation is often written
in terms of frequency, ν (=ω/2π) and wavelength, λ (=2π/k) as

2
2πν
λ

= 





c
π

   or

νλ = c [8.9(b)]

It is also seen from Maxwell’s equations that the magnitude of the
electric and the magnetic fields in an electromagnetic wave are related as

B
0
 = (E

0
/c) (8.10)

We here make remarks on some features of electromagnetic waves.
They are self-sustaining oscillations of electric and magnetic fields in
free space, or vacuum. They differ from all the other waves we have

studied so far, in respect that no material medium is involved in the
vibrations of the electric and magnetic fields.

But what if a material medium is actually there? We know that light,

an electromagnetic wave, does propagate through glass, for example. We
have seen earlier that the total electric and magnetic fields inside a
medium are described in terms of a permittivity ε and a magnetic

permeability µ (these describe the factors  by which the total fields differ
from the external fields). These replace ε

0
 and µ

0
 in the description to

electric and magnetic fields in Maxwell’s equations with the result that in

a material medium of permittivity ε and magnetic permeability µ, the
velocity of light becomes,

1
v

µε
= (8.11)

Thus, the velocity of light depends on electric and magnetic properties of
the medium. We shall see in the next chapter that the refractive index of
one medium with respect to the other is equal to the ratio of velocities of

light in the two media.
The velocity of electromagnetic waves in free space or vacuum is an

important fundamental constant. It has been shown by experiments on

electromagnetic waves of different wavelengths that this velocity is the
same (independent of wavelength) to within a few metres per second, out
of a value of 3×108 m/s. The constancy of the velocity of em waves in
vacuum is so strongly supported by experiments and the actual value is

so well known now that this is used to define a standard of length.

The great technological importance of electromagnetic waves stems

from their capability to carry energy from one place to another. The

radio and TV signals from broadcasting stations carry energy. Light

carries energy from the sun to the earth, thus making life possible on

the earth.
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Example 8.1 A plane electromagnetic wave of frequency

25 MHz travels in free space along the x-direction. At a particular

point in space and time, E = 6.3 ĵ  V/m. What is B at this point?

Solution Using Eq. (8.10), the magnitude of B is

–8

8

6.3 V/m
2.1 10 T

3 10 m/s

E
B

c
=

= = ×
×

To find the direction, we note that E is along y-direction and the
wave propagates along x-axis. Therefore, B should be in a direction
perpendicular to both x- and y-axes. Using vector algebra, E × B should

be along  x-direction. Since, (+ ĵ ) × (+ k̂ ) = î , B is along the z-direction.

Thus, B = 2.1 × 10–8 k̂ T

Example 8.2 The magnetic field in a plane electromagnetic wave is

given by B
y
 = (2 × 10–7) T sin (0.5×103

x+1.5×1011t).

(a) What is the wavelength and frequency of the wave?

(b) Write an expression for the electric field.

Solution

(a) Comparing the given equation with

2p
λ

x t

T
+















B

y
=B

0 
Sin

We get, 3

2

0.5 10

πλ =
×

 m = 1.26 cm,

and   ( )111
1.5 10 /2 23.9 GHz

T
ν= = × π =

(b) E
0
 = B

0
c = 2×10–7 T × 3 × 108 m/s = 6 × 101 V/m

The electric field component is perpendicular to the direction of
propagation and the direction of magnetic field. Therefore, the
electric field component along the z-axis is obtained as

E
z
 = 60 sin (0.5 × 103

x + 1.5 × 1011 t) V/m

8.4  ELECTROMAGNETIC SPECTRUM

At the time Maxwell predicted the existence of electromagnetic waves, the
only familiar electromagnetic waves were the visible light waves. The existence
of ultraviolet and infrared waves was barely established. By the end of the
nineteenth century, X-rays and gamma rays had also been discovered.  We
now know that, electromagnetic waves include visible light waves, X-rays,
gamma rays, radio waves, microwaves, ultraviolet and infrared waves. The
classification of em waves according to frequency is the electromagnetic
spectrum (Fig. 8.4). There is no sharp division between one kind of wave
and the next. The classification is based roughly on how the waves are
produced and/or detected.

We briefly describe these different types of electromagnetic waves, in
order of decreasing wavelengths.
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FIGURE 8.4 The electromagnetic spectrum, with common names for various
part of it. The various regions do not have sharply defined boundaries.

8.4.1  Radio waves

Radio waves are produced by the accelerated motion of charges in conducting
wires. They are used in radio and television communication systems. They
are generally in the frequency range from 500 kHz to about 1000 MHz.
The AM (amplitude modulated) band is from 530 kHz to 1710 kHz. Higher
frequencies upto 54 MHz are used for short wave bands. TV waves range
from 54 MHz to 890 MHz. The FM (frequency modulated) radio band
extends from 88 MHz to 108 MHz. Cellular phones use radio waves to
transmit voice communication in the ultrahigh frequency (UHF) band. How
these waves are transmitted and received is described in Chapter 15.

8.4.2  Microwaves

Microwaves (short-wavelength radio waves), with frequencies in the
gigahertz (GHz) range, are produced by special vacuum tubes (called
klystrons, magnetrons and Gunn diodes). Due to their short wavelengths,
they are suitable for the radar systems used in aircraft navigation. Radar
also provides the basis for the speed guns used to time fast balls, tennis-
serves, and automobiles. Microwave ovens are an interesting domestic
application of these waves. In such ovens, the frequency of the microwaves
is selected to match the resonant frequency of water molecules so that
energy from the waves is transferred efficiently to the kinetic energy of
the molecules. This raises the temperature of any food containing water.
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8.4.3 Infrared waves

Infrared waves are produced by hot bodies and molecules. This band
lies adjacent to the low-frequency or long-wave length end of the visible
spectrum. Infrared waves are sometimes referred to as heat waves. This
is because water molecules present in most materials readily absorb
infrared waves (many other molecules, for example, CO2, NH3, also absorb
infrared waves). After absorption, their thermal motion increases, that is,
they heat up and heat their surroundings. Infrared lamps are used in
physical therapy. Infrared radiation also plays an important role in
maintaining the earth’s warmth or average temperature through the
greenhouse effect. Incoming visible light (which passes relatively easily
through the atmosphere) is absorbed by the earth’s surface and re-
radiated as infrared (longer wavelength) radiations. This radiation is
trapped by greenhouse gases such as carbon dioxide and water vapour.
Infrared detectors are used in Earth satellites, both for military purposes
and to observe growth of crops. Electronic devices (for example
semiconductor light emitting diodes) also   emit infrared and are widely
used in the remote switches of household electronic systems such as TV
sets, video recorders and hi-fi systems.

8.4.4 Visible rays

It is the most familiar form of electromagnetic waves. It is the part of the
spectrum that is detected by the human eye. It runs from about
4 × 1014 Hz to about 7 × 1014

 Hz or a wavelength range of about 700 –
400 nm. Visible light emitted or reflected from objects around us provides
us information about the world. Our eyes are sensitive to this range of
wavelengths. Different animals are sensitive to different range of
wavelengths. For example, snakes can detect infrared waves, and the
‘visible’ range of many insects extends well into the utraviolet.

8.4.5 Ultraviolet rays

It covers wavelengths ranging from about 4 × 10–7 m (400 nm) down to
6 × 10–10m (0.6 nm). Ultraviolet (UV) radiation is produced by special
lamps and very hot bodies. The sun is an important source of ultraviolet
light. But fortunately, most of it is absorbed in the ozone layer in the
atmosphere at an altitude of about 40 – 50 km. UV light in large quantities
has harmful effects on humans. Exposure to UV radiation induces the
production of more melanin, causing tanning of the skin. UV radiation is
absorbed by ordinary glass. Hence, one cannot get tanned or sunburn
through glass windows.

Welders wear special glass goggles or face masks with glass windows
to protect their eyes from large amount of UV produced by welding arcs.
Due to its  shorter wavelengths, UV radiations  can be focussed into very
narrow beams for high precision applications such as  LASIK (Laser-

assisted in situ keratomileusis) eye surgery. UV lamps are used to kill
germs  in water purifiers.

Ozone layer in the atmosphere plays a protective role, and hence its
depletion by chlorofluorocarbons (CFCs) gas (such as freon) is a matter
of international concern.
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8.4.6 X-rays

Beyond the UV region of the electromagnetic spectrum lies the X-ray
region. We are familiar with X-rays because of its medical applications. It
covers wavelengths from about 10–8 m (10 nm) down to 10–13 m
(10–4 nm). One common way to generate X-rays is to bombard a metal
target by high energy electrons. X-rays are used as a diagnostic tool in
medicine and as a treatment for certain forms of cancer. Because X-rays
damage or destroy living tissues and organisms, care must be taken to
avoid unnecessary or over exposure.

8.4.7 Gamma rays

They lie in the upper frequency range of the electromagnetic spectrum
and have wavelengths of from about 10–10m to less than 10–14m. This
high frequency radiation is produced in nuclear reactions and
also emitted by radioactive nuclei. They are used in medicine to destroy
cancer cells.

Table 8.1 summarises different types of electromagnetic waves, their
production and detections. As mentioned earlier, the demarcation between
different regions is not sharp and there are overlaps.

TABLE 8.1 DIFFERENT TYPES OF ELECTROMAGNETIC WAVES

Type Wavelength range Production Detection

Radio > 0.1 m Rapid  acceleration and Receiver’s aerials
decelerations of electrons
in aerials

Microwave 0.1m to 1 mm Klystron valve or Point contact diodes
magnetron valve

Infra-red 1mm to 700 nm Vibration of atoms Thermopiles
and molecules Bolometer, Infrared

photographic film

Light 700 nm to 400 nm Electrons in atoms emit The eye
light when they move from Photocells
one energy level to a Photographic film
lower energy level

Ultraviolet 400 nm to 1nm Inner shell electrons in Photocells
atoms moving from one Photographic film
energy level  to a lower level

X-rays 1nm to 10–3 nm X-ray tubes or inner shell Photographic film
electrons Geiger tubes

Ionisation chamber

Gamma rays  <10–3 nm Radioactive decay of the -do-
nucleus
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SUMMARY

1. Maxwell found an inconsistency in the Ampere’s law and suggested the
existence of an additional current, called displacement current, to remove
this inconsistency. This displacement current is due to time-varying electric
field and is given by

0
d
ddi

t

Φε Ε=

and acts as a source of magnetic field in exactly the same way as conduction
current.

2. An accelerating charge produces electromagnetic waves. An electric charge
oscillating harmonically with frequency n, produces electromagnetic waves
of the same frequency n. An electric dipole is a basic source of
electromagnetic waves.

3. Electromagnetic waves with wavelength of the order of a few metres were
first produced and detected in the laboratory by Hertz in 1887. He thus
verified a basic prediction of Maxwell’s equations.

4. Electric and magnetic fields oscillate sinusoidally in space and time in an
electromagnetic wave. The oscillating electric and magnetic fields, E and
B are perpendicular to each other, and to the direction of propagation of
the electromagnetic wave. For a wave of frequency n, wavelength l,
propagating along z-direction, we have

E
 
 = E

x
 (t) = E0 sin (kz – w t )

   = E0 sin    2 20π πz
t E

z t

Tλ
ν

λ
−











= −











sin

B = B
y
(t) = B0 sin (kz – w t)

   = B
z

t B
z t

T
0 02 2sin sinπ π

λ
ν

λ
−











= −











They are related by E0/B0 = c.

5. The speed c of electromagnetic wave in vacuum is related to m0 and e0 (the
free space permeability and permittivity constants) as follows:

0 01/c µ ε= . The value of c equals the speed of light obtained from

optical measurements.

Light is an electromagnetic wave; c is, therefore, also the speed of light.
Electromagnetic waves other than light also have the same velocity c in
free space.

The speed of light, or of electromagnetic waves in a material medium is

given by 1/v µ ε=
where m is the permeability of the medium and e its permittivity.

6. The spectrum of electromagnetic waves stretches, in principle, over an
infinite range of wavelengths. Different regions are known by different
names; g-rays, X-rays, ultraviolet rays, visible rays, infrared rays,
microwaves and radio waves in order of increasing wavelength  from 10–2 Å
or 10–12

 m to 106
 m.

They interact with matter via their electric and magnetic fields which set
in oscillation charges present in all matter. The detailed interaction and
so the mechanism of absorption, scattering, etc., depend on the wavelength
of the electromagnetic wave, and the nature of the atoms and molecules
in the medium.
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POINTS TO PONDER

1. The basic difference between various types of electromagnetic waves
lies in their wavelengths or frequencies since all of them travel through
vacuum with the same speed. Consequently, the waves differ
considerably in their mode of interaction with matter.

2. Accelerated charged particles radiate electromagnetic waves. The
wavelength of the electromagnetic wave is often correlated with the
characteristic size of the system that radiates. Thus, gamma radiation,
having wavelength of 10–14 m to 10–15 m, typically originate from an
atomic nucleus. X-rays are emitted from heavy atoms. Radio waves
are produced by accelerating electrons in a circuit. A transmitting
antenna can most efficiently radiate waves having a wavelength of
about the same size as the antenna. Visible radiation emitted by atoms
is, however, much longer in wavelength than atomic size.

3. Infrared waves, with frequencies lower than those of visible light,
vibrate not only the electrons, but entire atoms or molecules of a
substance. This vibration increases the internal energy and
consequently, the temperature of the substance. This is why infrared
waves are often called heat waves.

4. The centre of sensitivity of our eyes coincides with the centre of the
wavelength distribution of the sun. It is because humans have evolved
with visions most sensitive to the strongest wavelengths from
the sun.

EXERCISES

8.1 Figure 8.5 shows a capacitor made of two circular plates each of
radius 12 cm, and separated by 5.0 cm. The capacitor is being
charged by an external source (not shown in the figure). The
charging current is constant and equal to 0.15A.

(a) Calculate the capacitance and the rate of change of potential
difference between the plates.

(b) Obtain the displacement current across the plates.

(c) Is Kirchhoff’s first rule (junction rule) valid at each plate of the
capacitor? Explain.

FIGURE 8.5

8.2 A parallel plate capacitor (Fig. 8.6) made of circular plates each of radius
R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to
a 230 V ac supply with a (angular) frequency of 300 rad s–1.
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(a) What is the rms value of the conduction current?
(b) Is the conduction current equal to the displacement current?
(c) Determine the amplitude of B at a point 3.0 cm from the axis

between the plates.

FIGURE 8.6

8.3 What physical quantity is the same for X-rays of wavelength
10–10

 m, red light of wavelength 6800 Å and radiowaves of wavelength
500m?

8.4 A plane electromagnetic wave travels in vacuum along z-direction.
What can you say about the directions of its electric and magnetic
field vectors? If the frequency of the wave is 30 MHz, what is its
wavelength?

8.5 A radio can tune in to any station in the 7.5 MHz to 12 MHz band.
What is the corresponding wavelength band?

8.6 A charged particle oscillates about its mean equilibrium position
with a frequency of 109

 Hz. What is the frequency of the
electromagnetic waves produced by the oscillator?

8.7 The amplitude of the magnetic field part of a harmonic
electromagnetic wave in vacuum is B0 = 510 nT. What is the
amplitude of the electric field part of the wave?

8.8 Suppose that the electric field amplitude of an electromagnetic wave
is E0 = 120 N/C and that its frequency is n = 50.0 MHz. (a) Determine,
B0,w, k, and l. (b) Find expressions for E and B.

8.9 The terminology of different parts of the electromagnetic spectrum
is given in the text. Use the formula E = hn (for energy of a quantum
of radiation: photon) and obtain the photon energy in units of eV for
different parts of the electromagnetic spectrum. In what way are
the different scales of photon energies that you obtain related to the
sources of electromagnetic radiation?

8.10 In a plane electromagnetic wave, the electric field oscillates
sinusoidally at a frequency of 2.0 × 1010 Hz and amplitude 48 V m–1.
(a) What is the wavelength of the wave?
(b) What is the amplitude of the oscillating magnetic field?
(c) Show that the average energy density of the E field equals the

average energy density of the B field. [c = 3 × 108 m s–1.]
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ANSWERS

CHAPTER 1

1.1 6 × 10–3 N  (repulsive)

1.2 (a) 12 cm
(b) 0.2 N (attractive)

1.3 2.4 × 1039. This is the ratio of electric force to the  gravitational force
(at the same distance) between an electron and a proton.

1.5 Charge is not created or destroyed. It is merely transferred from one
body to another.

1.6 Zero N

1.8 (a) 5.4 ×  106 N C–1 along OB
(b) 8.1  ×  10–3 N along OA

1.9 Total charge is zero. Dipole moment  = 7.5 × 10–8 C m along z-axis.

1.10 10–4  N m

1.11 (a) 2 × 1012,  from wool to polythene.
(b) Yes, but of a negligible amount ( = 2 × 10–18 kg in the example).

1.12 (a) 1.5  ×  10–2 N
(b) 0.24 N

1.13 Charges 1 and 2 are negative, charge 3 is positive. Particle 3 has
the highest charge to mass ratio.

1.14 (a) 30Nm2/C,    (b) 15 Nm2/C

1.15 Zero. The number of lines entering the cube is the same as the
number of lines leaving the cube.

1.16 (a) 0.07  mC
(b) No, only that the net charge inside is zero.

1.17 2.2 × 105 N m2/C

1.18 1.9 × 105 N m2/C

1.19 (a) –103 N m2/C;  because the charge enclosed is the same in the
two cases.

(b) –8.8 nC

1.20 –6.67 nC

1.21 (a) 1.45 ×  10–3 C
(b) 1.6  × 108  Nm2/C

1.22 10 mC/m

1.23 (a)  Zero,  (b)  Zero,  (c)  1.9 N/C
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CHAPTER 2

2.1 10 cm, 40 cm away from the positive charge on the side of the
negative charge.

2.2 2.7 × 106  V

2.3 (a) The plane  normal to AB and passing through its mid-point has
zero potential everywhere.

(b) Normal to the plane in the direction AB.

2.4 (a) Zero

(b) 105 N C–1

(c) 4.4 × 104 N C–1

2.5 96 pF

2.6 (a) 3 pF

(b) 40 V

2.7 (a) 9  pF

(b) 2 × 10–10 C,  3 × 10–10 C,  4 × 10–10 C

2.8 18 pF, 1.8 × 10–9 C

2.9 (a) V = 100 V, C = 108 pF, Q = 1.08 × 10–8 C

(b) Q = 1.8 × 10–9 C, C = 108 pF, V = 16.6 V

2.10 1.5 × 10–8 J

2.11 6 × 10–6 J

CHAPTER 3

3.1 30 A

3.2 17 Ω, 8.5 V

3.3 1027 °C

3.4 2.0 × 10–7 Ωm

3.5 0.0039 °C–1

3.6 867 °C

3.7 Current in branch AB = (4/17) A,

in BC = (6/17) A, in CD = (–4/17) A,

in AD = (6/17) A, in BD. = (–2/17) A, total current = (10/17) A.

3.8 11.5 V; the series resistor limits the current drawn from the external

source. In its absence, the current will be dangerously high.

3.9 2.7 × 104 s (7.5 h)

CHAPTER 4

4.1 π × 10–4 T ≃ 3.1 × 10–4 T

4.2 3.5 × 10–5 T
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Answers

4.3 4 × 10–6 T, vertical up

4.4 1.2 × 10–5 T, towards south

4.5 0.6 N m–1

4.6 8.1 × 10–2 N; direction of force given by Fleming’s left-hand rule

4.7 2 × 10–5 N; attractive force normal to A towards B

4.8 8π × 10–3 T ≃ 2.5 × 10–2 T

4.9 0.96 N m

4.10 (a) 1.4, (b) 1

4.11 4.2 cm

4.12 18 MHz

4.13 (a) 3.1 Nm, (b) No, the answer is unchanged because the formula

τττττ = N I A × B is true for a planar loop of any shape.

CHAPTER 5

5.1 0.36 JT–1

5.2 (a) m parallel to B; U =  –mB  =  –4.8 × 10–2 J: stable.

(b) m anti-parallel to B; U = +mB = +4.8 × 10–2 J; unstable.

5.3 0.60 JT–1 along the axis of the solenoid determined by the sense of

flow of the current.

5.4       7.5 ×10–2 J

5.5 (a) (i) 0.33 J    (ii) 0.66 J

(b) (i) Torque of magnitude 0.33 J in a direction that tends to align

the magnitude moment vector along B.   (ii) Zero.

5.6 (a) 1.28 A m2 along the axis in the direction related to the sense of

current via the right-handed screw rule.

(b) Force is zero in uniform field; torque = 0.048 Nm in a direction

that tends to align the axis of the solenoid (i.e., its magnetic

moment vector) along B.

5.7 (a) 0.96 g along S-N direction.

(b) 0.48 G along N-S direction.

CHAPTER 6

6.1 (a) Along qrpq

(b) Along prq, along yzx

(c) Along yzx

(d) Along zyx

(e) Along xry

(f ) No induced current since field lines lie in the plane of the loop.
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6.2 (a) Along adcd (flux through the surface increases during shape
change, so induced current produces opposing flux).

(b) Along a′d′c′b′ (flux decreases during the process)

6.3 7.5 × 10–6 V

6.4 (1) 2.4 × 10–4 V, lasting 2 s

(2) 0.6 × 10–4 V, lasting 8 s

6.5 100 V

6.6 (a) 1.5 × 10–3 V, (b) West to East, (c) Eastern end.

6.7 4H

6.8 30 Wb

CHAPTER 7

7.1 (a) 2.20 A

(b) 484 W

7.2 (a)
300

2
2121= . V

(b) 10 2 141= . A

7.3 15.9 A

7.4 2.49 A

7.5 Zero in each case.

7.6 1.1 × 103 s–1

7.7 2,000 W

7.8 (a) 50 rad s–1

(b) 40 Ω, 8.1 A

(c) V
Lrms

= 1437 5.  V, V
Crms

= 1437 5. V , V
Rrms

= 230 V

V I L
C

LCrms rms= −






=ω

ω

0

0

1
0

CHAPTER 8

8.1 (a) 0 /C A dε= = 8.00 pF

d d

d d

Q V
C

t t
=

–12

0.15

80.1 10

dV

dt
=

×
9 –1

1.87 10 V s= ×
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Answers

(b) 0 .

d

d
di

t
ε ΦΕ= . Now across the capacitor Φ

E
 = EA, ignoring end

corrections.

Therefore, 0

d

d
di A

t

Φε Ε=

Now,
0

Q
E

Aε
= . Therefore, 

0

d

d

E i

t Aε
= , which implies i

d
 = i = 0.15 A.

(c) Yes, provided by ‘current’ we mean the sum of conduction and
displacement currents.

8.2 (a) I
rms

 = V
rms

 ωC = 6.9µA

(b) Yes. The derivation in Exercise 8.1(b) is true even if i is oscillating
in time.

(c) The formula 
0

2
2

d

r
B i

R

µ
π

=

goes through even if i
d
 (and therefore B ) oscillates in time. The

formula shows they oscillate in phase. Since i
d
 = i, we have

0

0 02
2

r
B i

R

µ
π

= , where B
0
 and i

0
 are the amplitudes of the oscillating

magnetic field and current, respectively. i
0
=

rms
2I = 9.76 µA. For

r = 3 cm, R = 6 cm, B
0
 = 1.63 × 10–11 T.

8.3 The speed in vacuum is the same for all: c = 3 × 108 m s–1.

8.4 E and B in x-y plane and are mutually perpendicular,  10 m.

8.5 Wavelength band: 40 m – 25 m.

8.6 109 Hz

8.7 153 N/C

8.8 (a) 400 nT,  3.14 × 108 rad/s, 1.05 rad/m, 6.00 m.

(b) E = { (120 N/C) sin[(1.05 rad/m)]x – (3.14 × 108 rad/s)t]} ĵ

B = { (400 nT) sin[(1.05 rad/m)]x – (3.14 × 108 rad/s)t ]} k̂

8.9 Photon energy (for λ = 1 m)

= 
34 8

6

19

6.63 10 3 10
eV 1.24 10 eV

1.6 10

−
−

−
× × ×

= ×
×

Photon energy for other wavelengths in the figure for electromagnetic

spectrum can be obtained by multiplying approximate powers of

ten. Energy of a photon that a source produces indicates the spacings

of the relevant energy levels of the source. For example, λ = 10–12 m

corresponds to photon energy = 1.24 × 106 eV = 1.24 MeV. This

indicates that nuclear energy levels (transition between which causes
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γ-ray emission) are typically spaced by 1 MeV or so. Similarly, a

visible wavelength λ = 5 × 10–7 m, corresponds to photon energy

= 2.5 eV. This implies that energy levels (transition between which

gives visible radiation) are typically spaced by a few eV.

8.10 (a) λ = (c/ν) = 1.5 × 10–2 m

(b) B
0
 = (E

0
/c) = 1.6 × 10–7 T

(c) Energy density in E field: u
E
 = (1/2)ε

0 
E 2

Energy density in B field: u
B
 = (1/2µ

0
)B 2

Using E = cB, and c = 
0 0

1

µ ε
, u

E
 = u

B
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